ciliary beating
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 58)

H-INDEX

37
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Veikko F. Geyer ◽  
Jonathon Howard ◽  
Pablo Sartori

AbstractBiological systems are robust to perturbations at both the genetic and environmental levels, although these same perturbations can elicit variation in behaviour. The interplay between functional robustness and behavioural variability is exemplified at the organellar level by the beating of cilia and flagella. Cilia are motile despite wide genetic diversity between and within species, differences in intracellular concentrations of ATP and calcium, and considerable environment fluctuations in temperature and viscosity. At the same time, these perturbations result in a variety of spatio-temporal patterns that span a rich behavioural space. To investigate this behavioural space we analysed the dynamics of isolated cilia from the unicellular algae Chlamydomonas reinhardtii under many different environmental and genetic conditions. We found that, despite large changes in beat frequency and amplitude, the space of waveform shapes is low-dimensional in the sense that two features account for 80% of the observed variation. The geometry of this behavioural space accords with the predictions of a simple mechanochemical model in the low-viscosity regime. This allowed us to associate waveform shape variability with changes in only the curvature response coefficients of the dynein motors.


2021 ◽  
Author(s):  
Vicente Herranz-Pérez ◽  
Jin Nakatani ◽  
Masaki Ishii ◽  
Toshiaki Katada ◽  
Jose Manuel García-Verdugo ◽  
...  

Abstract The fusion protein of uncharacterised zinc finger translocation associated (ZFTA) and effector transcription factor of tumorigenic NF-kB signalling, RELA (ZFTA-RELA), is expressed in more than two-thirds of supratentorial ependymoma (ST-EPN-RELA), but ZFTA’s expression profile and functional analysis in multiciliated ependymal (E1) cells have not been examined. Here, we showed the mRNA expression of mouse Zfta peaks on embryonic day (E) 17.5 in the wholemount of the lateral walls of the lateral ventricle. Zfta was expressed in the nuclei of FoxJ1-positive immature E1 (pre-E1) cells in E18.5 mouse embryonic brain. Interestingly, the transcription factors promoting ciliogenesis (ciliary TFs) (e.g., multicilin) and ZFTA-RELA upregulated luciferase activity using a 5’ upstream sequence of ZFTA in cultured cells. Zftatm1/tm1 knock-in mice did not show developmental defects or abnormal fertility. In the Zftatm1/tm1 E1 cells, morphology, gene expression, ciliary beating frequency and ependymal flow were unaffected. These results suggest that Zfta is expressed in pre-E1 cells, possibly under the control of ciliary TFs, but is not essential for ependymal development or flow. This study sheds light on the mechanism of the ZFTA-RELA expression in the pathogenesis of ST-EPN-RELA: Ciliary TFs initiate ZFTA-RELA expression in pre-E1 cells, and ZFTA-RELA enhances its own expression using positive feedback.


2021 ◽  
Author(s):  
Subash Godar ◽  
James Oristian ◽  
Valerie Hinsch ◽  
Katherine Wentworth ◽  
Ethan Lopez ◽  
...  

AbstractFlagellar motility is essential for the cell morphology, viability, and virulence of pathogenic kinetoplastids, including trypanosomes. Trypanosoma brucei flagella exhibit a bending wave that propagates from the flagellum’s tip to its base, rather than base-to-tip as in other eukaryotes. Thousands of dynein motor proteins coordinate their activity to drive ciliary bending wave propagation. Dynein- associated light and intermediate chains regulate the biophysical mechanisms of axonemal dynein. Tctex- type outer arm dynein light chain 2 (LC2) regulates flagellar bending wave propagation direction, amplitude, and frequency in Chlamydomonas reinhardtii. However, the role of Tctex-type light chains in regulating T. brucei motility is unknown. Here, we used a combination of bioinformatics, in-situ molecular tagging, and immunofluorescence microscopy to identify a Tctex-type light chain in the procyclic form of T. brucei (TbLC2). We knocked down TbLC2 expression using RNAi, rescued the knockdown with eGFP- tagged TbLC2, and quantified TbLC2’s effects on trypanosome cell biology and biophysics. We found that TbLC2 knockdown resulted in kinetoplast mislocalization and the formation of multiple cell clusters in cell culture. We also found that TbLC2 knockdown reduced the directional persistence of trypanosome cell swimming, induced an asymmetric ciliary bending waveform, modulated the bias between the base-to- tip and tip-to-base beating modes, and increased the beating frequency. Together, our findings are consistent with a model of TbLC2 as a down-regulator of axonemal dynein activity that stabilizes the forward tip-to-base beating ciliary waveform characteristic of trypanosome cells. Our work sheds light on axonemal dynein regulation mechanisms that contribute to pathogenic kinetoplastids’ unique tip-to-base ciliary beating nature and how those mechanisms underlie dynein-driven ciliary motility more generally.Author SummaryKinetoplastea is a class of ciliated protists that include parasitic trypanosomes, which cause severe disease in people and livestock in tropical regions across the globe. All trypanosomes, including Trypanosoma brucei, require a cilium to provide propulsive force for directional swimming motility, host immune evasion, and various aspects of their cell cycle. Thus, a functional cilium is essential for the virulence of the parasite.Trypanosome cilia exhibit a unique tip-to-base beating mechanism, different from the base-to-tip beating of most other eukaryotic cilia. Multiple ciliary proteins are involved in the complex biophysical and biochemical mechanisms that underly the trypanosome ciliary beating. These include dynein motor proteins that power the beat, dynein-related light chains that regulate the beat, and many other proteins in the nexin-dynein regulatory complex, in the radial spokes, and associated with the central pair of microtubules, for example.Here, we identify a Tctex-type dynein light chain in T. brucei that we named TbLC2 because it has sequence homology, structural similarity, and ciliary localization like LC2 homologs in other organisms. We demonstrate that TbLC2 has critical dynein regulatory functions, with implications on the unique aspects of trypanosome ciliary beating and cellular swimming motility. Our study represents an additional step toward understanding the functions of the trypanosome ciliary proteome, which could provide novel therapeutic targets against the unique aspects of trypanosome ciliary motility.


2021 ◽  
Author(s):  
Xin Zhang ◽  
Jiang Sun ◽  
Yonggang Lu ◽  
Jintao Zhang ◽  
Keisuke Shimada ◽  
...  

Cilia and flagella are ancient structures that achieve controlled motor functions through the coordinated interaction based on microtubules, and some attached projections. Radial spokes (RSs) facilitate the beating motion of these organelles by mediating signal transduction between dyneins and a central pair (CP) of singlet microtubules. RS complex isolation from Chlamydomonas axonemes enabled the detection of 23 radial spoke proteins (RSP1-23), with the roles of some radial spoke proteins remained unknown. Recently, RSP15 has been reported to be located to the stalk of RS2, but its homolog in mammals has not been explored. Herein, we show that Lrrc23 is an evolutionarily conserved testis-enriched gene encoding an RSP15 homolog in mice. We found that LRRC23 localizes to the RS complex within murine sperm flagella and interacts with RSPH3A/B. The knockout of Lrrc23 resulted in male infertility due to RS disorganization and impaired motility in murine spermatozoa, whereas the ciliary beating was unaffected significantly. These data indicate that LRRC23 is a key regulator underpinning the integrity of RS complex within the flagella of mammalian spermatozoa, whereas it is dispensable in cilia.


2021 ◽  
Author(s):  
Mia konjikusic ◽  
john wallingford ◽  
ryan gray ◽  
kristen verhey ◽  
yue yang ◽  
...  

Most motile cilia have a stereotyped structure of nine microtubule outer doublets and a single central pair of microtubules. The central pair microtubules are surrounded by a set of proteins, termed the central pair apparatus. A specific kinesin, Klp1 projects from the central pair and contributes to ciliary motility in Chlamydomonas. The vertebrate orthologue, Kif9 is required for beating in mouse sperm flagella, but the mechanism of Kif9/Klp1 function remains poorly defined. Here, using Xenopus epidermal multiciliated cells, we show that Kif9 is necessary for ciliary motility as well as leads to defects in the distal localization of not only central pair proteins, but also radial spokes and dynein arms. In addition, single-molecule assays in vitro revealed that Xenopus Kif9 is a processive motor, though like axonemal dyneins it displays no processivity in ciliary axonemes in vivo. Thus, our data suggest that Kif9 plays both indirect and direct role in ciliary motility.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1060
Author(s):  
Veronika Aleksandrovych ◽  
Anna Wrona ◽  
Tomasz Bereza ◽  
Kazimierz Pityński ◽  
Krzysztof Gil

Tubal factor infertility occurs in 30–35% of infertile pairs and may be caused by impaired muscular contractility and ciliary beating as well as immunological imbalance and chronic inflammation. Newly discovered telocytes (TCs) have a wide palette of features, which play a role in oviduct physiology. We have observed tissue samples from human fallopian tubes in patients with and without uterine myoma by immunolabelling. According to the immunohistochemical co-expression of markers, it has been determined that TCs are engaged in a wide range of physiological processes, including local innervation, sensitivity to hypoxia, regulation of calcium, and sex steroid hormones balances. Due to the proximity of NOS- and ChAT-positive nerve fibers and the expression of ion channels markers, tubal TCs might be considered conductor cells. Additionally, their integration in contractions and cilia physiology in the context of fertility has been revealed. We have observed the difference in telocytes expression in the human oviduct between groups of patients and attempted to describe this population of cells specifically in the case of infertility development, a clinically relevant avenue for further studies.


2021 ◽  
pp. mbc.E20-12-0786
Author(s):  
Amy S. Fabritius ◽  
Brian A. Bayless ◽  
Sam Li ◽  
Daniel Stoddard ◽  
Westley Heydeck ◽  
...  

The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of Microtubule Inner Proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and Rib72B were identified as MIPs in the motile cilia of the protist Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of additional MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout Tetrahymena axonemes. We identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function.


2021 ◽  
Vol 118 (29) ◽  
pp. e2018193118
Author(s):  
Eva A. Kanso ◽  
Rubens M. Lopes ◽  
J. Rudi Strickler ◽  
John O. Dabiri ◽  
John H. Costello

Nutrient acquisition is crucial for oceanic microbes, and competitive solutions to solve this challenge have evolved among a range of unicellular protists. However, solitary solutions are not the only approach found in natural populations. A diverse array of oceanic protists form temporary or even long-lasting attachments to other protists and marine aggregates. Do these planktonic consortia provide benefits to their members? Here, we use empirical and modeling approaches to evaluate whether the relationship between a large centric diatom, Coscinodiscus wailesii, and a ciliate epibiont, Pseudovorticella coscinodisci, provides nutrient flux benefits to the host diatom. We find that fluid flows generated by ciliary beating can increase nutrient flux to a diatom cell surface four to 10 times that of a still cell without ciliate epibionts. This cosmopolitan species of diatom does not form consortia in all environments but frequently joins such consortia in nutrient-depleted waters. Our results demonstrate that symbiotic consortia provide a cooperative alternative of comparable or greater magnitude to sinking for enhancement of nutrient acquisition in challenging environments.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 511
Author(s):  
Michaela Kocmalova ◽  
Ivana Kazimierova ◽  
Jana Barborikova ◽  
Marta Joskova ◽  
Sona Franova ◽  
...  

Background: The presented study evaluated the suppositional changes in the airway expression of Nav1.8 and Nav1.7 and their role in the airway defense mechanisms in healthy animals and in an experimental asthma model. Methods: The effects of the blockers inhalation on the reactivity of guinea pig airways, number of citric-acid-induced coughs and ciliary beating frequency (CBF) were tested in vivo. Chronic inflammation simulating asthma was induced by repetitive exposure to ovalbumin. The expression of Nav1.7 and Nav1.8 was examined by ELISA. Results: The Nav 1.8 blocker showed complex antitussive and bronchodilatory effects and significantly regulated the CBF in healthy and sensitized animals. The Nav1.7 blockers significantly inhibited coughing and participated in CBF control in the ovalbumin-sensitized animals. The increased expression of the respective ion channels in the sensitized animals corresponded to changes in CBF regulation. The therapeutic potency of the Nav1.8 blocker was evidenced in combinations with classic bronchodilators. Conclusion: The allergic-inflammation-upregulated expression of Nav1.7 and Nav1.8 and corresponding effects of blocker inhalation on airway defense mechanisms, along with the Nav1.8 blocker’s compatibility with classic antiasthmatic drugs, bring novel possibilities for the treatment of various respiratory diseases. However, the influence of the Nav1.8 blocker on CBF requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document