Faculty Opinions recommendation of Clinical and molecular characterization of a cohort of 161 unrelated women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency and 330 family members.

Author(s):  
Robert Dluhy ◽  
Florencia Halperin
2003 ◽  
Vol 88 (6) ◽  
pp. 2726-2729 ◽  
Author(s):  
Hsien-Hsiung Lee ◽  
Shwu-Fen Chang ◽  
Fuu-Jen Tsai ◽  
Li-Ping Tsai ◽  
Ching-Yu Lin

More than 90% of the cases of congenital adrenal hyperplasia are caused by mutations of the CYP21 gene. Approximately 75% of the defective CYP21 genes are generated through intergenic recombination, termed apparent gene conversion, from the neighboring CYP21P pseudogene. Among them, mutation of the aberrant splicing donor site of IVS2 –12A/C>G at nucleotide (nt) 655 is believed to be a result derived from this mechanism and is the most prevalent case among all ethnic groups. However, mutation of 707–714delGAGACTAC rarely exists alone, although this locus is a distance of 53 nt away from IVS2 –12A/C>G. From the molecular characterization of the mutation of IVS2 –12A/C>G combined with 707–714delGAGACTAC in patients with congenital adrenal hyperplasia, we found that it appeared to be in a 3.2-rather than a 3.7-kb fragment generated by Taq I digestion in a PCR product of the CYP21 gene. Interestingly, the 5′ end region of such a CYP21 haplotype had CYP21P-specific sequences. Our results indicate that the coexistence of these two mutations is caused by deletion of the CYP21P, XA, RP2, and C4B genes and intergenic recombination in the C4-CYP21 repeat module. Surprisingly, this kind of the haplotype of the mutated CYP21 gene has not been reported as a gene deletion.


Sign in / Sign up

Export Citation Format

Share Document