adrenal hyperplasia
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Sophia Q. Song ◽  
Andrea Gropman ◽  
Robert W. Benjamin ◽  
Francie Mitchell ◽  
Michaela R. Brooks ◽  

Congenital adrenal hyperplasia is a group of autosomal recessive disorders in which enzymes in the cortisol biosynthesis pathways are disrupted by gene mutations. The most common form of congenital adrenal hyperplasia, caused by 21-hydroxylase deficiency, is characterized by decreased cortisol and aldosterone synthesis and excessive androgen production. Adult height is often compromised in affected patients. Intellectual capability remains intact in patients with congenital adrenal hyperplasia caused by 21-hydroxylase deficiency, based on previous studies. 47,XXY (KS) is a sex chromosomal aneuploidy that manifests with hypergonadotropic hypogonadism, tall stature, and variable intellectual and behavioral dysfunction. This clinical report describes an infant with 21-hydroxylase deficiency congenital adrenal hyperplasia and 47,XXY. The results of his neurodevelopmental, endocrine, neurological, and physical therapy evaluations during his first 22 months are included and were normal. This is the first published case investigating the neurodevelopmental profile of a patient with the combination of these two genetic disorders.

2022 ◽  
Kerstin Ekbom ◽  
Anna Strandqvist ◽  
Svetlana Lajic ◽  
Angelica Hirschberg ◽  
Henrik Falhammar ◽  

2022 ◽  
pp. 097321792110688
Sarah Alpini ◽  
Rasheda J. Vereen ◽  
Amy Quinn

Congenital adrenal hyperplasia (CAH) is a group of rare autosomal disorders characterized by a variety of defects in adrenal steroidogenesis. Most cases of CAH are due to an enzyme deficiency in either 21-hydroxylase or 11-beta-hydroxylase. A much rarer form of CAH due to 3-betahydroxysteroid dehydrogenase (3B-HSD) deficiency results in impaired synthesis of all steroid hormones. The clinical presentation of undervirilization in 46 XY patients, hyponatremia, hyperkalemia, and recurrent hypoglycemia in 3B-HSD deficiency cases is well described in the literature. We describe a neonate with 3B-HSD deficiency that presented with ambiguous genitalia and hypoglycemia and was found to have comorbid coagulopathy, cholestasis, and direct hyperbilirubinemia with liver failure that resolved with glucocorticoid and mineralocorticoid treatment. Prompt recognition of this disease is imperative for timely intervention.

2022 ◽  
Vol 22 (1) ◽  
Xiao-Gang Tan ◽  
Jie Zhu ◽  
Liang Cui

Abstract Background Primary macronodular adrenal hyperplasia (PMAH), previously termed ACTH-independent macronodular adrenal hyperplasia (AIMAH), is a rare cause of Cushing’s syndrome usually characterized by functioning adrenal macronodules and increased cortisol production. Methods To screen and analyse the microRNA (miRNA) profile of PMAH in order to elucidate its possible pathogenesis, a miRNA microarray was used to test tissue samples from patients with familial PMAH, patients with sporadic PMAH and normal control samples of other nontumour adrenocortical tissues and identify characteristic microRNA expression signatures. Randomly selected miRNAs were validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the key signalling pathways and miRNAs involved in PMAH pathogenesis were determined by gene ontology and pathway analysis. Results Characteristic microRNA expression signatures were identified for patients with familial PMAH (16 differentially expressed microRNAs) and patients with sporadic PMAH (8 differentially expressed microRNAs). The expression of the selected miRNAs was confirmed by qRT-PCR, suggesting the high reliability of the miRNA array analysis results. Pathway analysis showed that the most enriched pathway was the renal cell carcinoma pathway. Overexpression of miR-17, miR-20a and miR-130b may inhibit glucocorticoid-induced apoptosis in PMAH pathogenesis. Conclusion We identified the miRNA signatures in patients with familial and sporadic PMAH. The differentially expressed miRNAs may be involved in the mechanisms of PMAH pathogenesis. Specific miRNAs, such as miR-17, miR-20a and miR-130b, may be new targets for further functional studies of PMAH.

2022 ◽  
Vol 27 (6) ◽  
pp. 56
L.V. Adamyan ◽  
V.V. Nikolaev ◽  
D.A. Bizhanova ◽  
E.V. Sibirskaya ◽  
I.V. Karachentsova ◽  

2021 ◽  
Vol 71 (6) ◽  
pp. 2161-65
Sara Ali Zaidi ◽  
Asad Mahmood ◽  
Rafia Mahmood ◽  
Aamna Latif ◽  
Helen Mary Robert ◽  

Objective: To determine the magnitude and classification of cases of ambiguous genitalia presenting to our setup. Study Design: Cross-sectional study. Place and Duration of Study: Department of Haematology, Armed Forces Institute of Pathology, Rawalpindi Pakistan, from Aug 2018 to Feb 2019. Methodology: All the patients with ambiguous genitalia referred for cytogenetic analysis, were included in the study. The patients were subjected to a detailed history and physical examination. The record of radiological investigations was were obtained. Cytogenetic analysis was performed using the conventional G-banding technique. Hormonal testing included 17- hydroxyprogesterone (17-OHP) levels was also performed. Results: Fifty-one cases of ambiguous genitalia were studied. The median age was 15 months. Thirty-three patients (64.7%) had a 46XY karyotype, 17 (33.3%) had a 46XX karyotype while 1 (1.9%) had 45X/46, XY mosaic karyotype. Thirty patients (58.8%) were products of consanguineous marriage. Congenital adrenal hyperplasia was diagnosed in 12 cases (70.5%) of 46 XX karyotype and in 3 cases (9%) of 46XY karyotype. Conclusion: Ambiguous genitalia, currently categorized as disorders of sex development, are not uncommon in our populartion. Increased awareness and early diagnosis are crucial to prevent life threatening complications of congenital adrenal hyperplasia, to determine sex of rearing, and to counsel the parents or patients.

2021 ◽  
Vol 44 (1) ◽  
pp. 128-138
Nae Takizawa ◽  
Susumu Tanaka ◽  
Koshiro Nishimoto ◽  
Yuki Sugiura ◽  
Makoto Suematsu ◽  

Primary aldosteronism is most often caused by aldosterone-producing adenoma (APA) and bi-lateral adrenal hyperplasia. Most APAs are caused by somatic mutations of various ion channels and pumps, the most common being the inward-rectifying potassium channel KCNJ5. Germ line mutations of KCNJ5 cause familial hyperaldosteronism type 3 (FH3), which is associated with severe hyperaldosteronism and hypertension. We present an unusual case of FH3 in a young woman, first diagnosed with primary aldosteronism at the age of 6 years, with bilateral adrenal hyperplasia, who underwent unilateral adrenalectomy (left adrenal) to alleviate hyperaldosteronism. However, her hyperaldosteronism persisted. At the age of 26 years, tomography of the remaining adrenal revealed two different adrenal tumors, one of which grew substantially in 4 months; therefore, the adrenal gland was removed. A comprehensive histological, immunohistochemical, and molecular evaluation of various sections of the adrenal gland and in situ visualization of aldosterone, using matrix-assisted laser desorption/ionization imaging mass spectrometry, was performed. Aldosterone synthase (CYP11B2) immunoreactivity was observed in the tumors and adrenal gland. The larger tumor also harbored a somatic β-catenin activating mutation. Aldosterone visualized in situ was only found in the subcapsular regions of the adrenal and not in the tumors. Collectively, this case of FH3 presented unusual tumor development and histological/molecular findings.

2021 ◽  
Mayara Jorgens Prado ◽  
Rodrigo Ligabue-Braun ◽  
Arnaldo Zaha ◽  
Maria Lucia Rosa Rossetti ◽  
Amit V Pandey

Context: CYP21A2 deficiency represents 95% of congenital adrenal hyperplasia cases (CAH), a group of genetic disorders that affect steroid biosynthesis. The genetic and functional analysis provides critical tools to elucidate complex CAH cases. One of the most accessible tools to infer the pathogenicity of new variants is in silico prediction. Objective: Analyze the performance of in silico prediction tools to categorize missense single nucleotide variants (SNVs) of the CYP21A2. Methods: SNVs of the CYP21A2 characterized in vitro by functional assays were selected to assess the performance of online single and meta predictors. SNVs were tested separately or in combination with the related phenotype (severe or mild CAH form). In total, 103 SNVs of the CYP21A2 (90 pathogenic and 13 neutral) were used to test the performance of 13 single-predictors and four meta-predictors. Results: SNVs associated with the severe phenotypes were well categorized by all tools, with an accuracy between 0.69 (PredictSNP2) and 0.97 (CADD), and Matthews' correlation coefficient (MCC) between 0.49 (PoredicSNP2) and 0.90 (CADD). However, SNVs related to the mild phenotype had more variation, with the accuracy between 0.47 (S3Ds&GO and MAPP) and 0.88 (CADD), and MCC between 0.18 (MAPP) and 0.71 (CADD). Conclusion: From our analysis, we identified four predictors of CYP21A2 pathogenicity with good performance. These results can be used for future analysis to infer the impact of uncharacterized SNVs' in CYP21A2.

Sign in / Sign up

Export Citation Format

Share Document