Faculty Opinions recommendation of Structural rearrangements of a polyketide synthase module during its catalytic cycle.

Author(s):  
Wenjun Zhang
Nature ◽  
2014 ◽  
Vol 510 (7506) ◽  
pp. 560-564 ◽  
Author(s):  
Jonathan R. Whicher ◽  
Somnath Dutta ◽  
Douglas A. Hansen ◽  
Wendi A. Hale ◽  
Joseph A. Chemler ◽  
...  

Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
DH Sherman ◽  
G Skiniotis ◽  
JL Smith ◽  
K Håkansson ◽  
S Dutta ◽  
...  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009386 ◽  
Author(s):  
Thorsten Langner ◽  
Adeline Harant ◽  
Luis B. Gomez-Luciano ◽  
Ram K. Shrestha ◽  
Angus Malmgren ◽  
...  

Supernumerary mini-chromosomes–a unique type of genomic structural variation–have been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the mechanisms that facilitate the emergence and maintenance of mini-chromosomes across fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), mini-chromosomes have been first described in the early 1990s but, until very recently, have been overlooked in genomic studies. Here we investigated structural variation in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence composition. They are enriched in repetitive elements and have lower gene density than core-chromosomes. We identified several virulence-related genes in the mini-chromosome of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural rearrangements, including inter-chromosomal translocations between core- and mini-chromosomes. Our findings provide evidence that mini-chromosomes emerge from structural rearrangements and segmental duplication of core-chromosomes and might contribute to adaptive evolution of the blast fungus.


2019 ◽  
Author(s):  
Zhonglin Tao ◽  
Brad Gilbert ◽  
Scott Denmark

The enantioselective, vicinal diamination of alkenes represents one of the stereocontrolled additions that remains an outstanding challenge in organic synthesis. A general solution to this problem would enable the efficient and selective preparation of widely useful, enantioenriched diamines for applications in medicinal chemistry and catalysis. In this Article we describe the first enantioselective, <i>syn-</i>diamination of simple alkenes mediated by a chiral, enantioenriched organoselenium catalyst together with a <i>N,N’-</i>bistosyl urea as the bifunctional nucleophile and <i>N-</i>fluorocollidinium tetrafluoroborate as the stoichiometric oxidant. Diaryl, aryl-alkyl, and alkyl-alkyl olefins bearing a variety of substituents are all diaminated in consistently high enantioselectivities selectivities but variable yields. The reaction likely proceeds through a Se(II)/Se(IV) redox catalytic cycle reminiscent of the <i>syn-</i>dichlorination reported previously. Furthermore, the <i>syn</i>-stereospecificity of the transformation shows promise for highly enantioselective diaminations of alkenes with no strong steric or electronic bias.


Sign in / Sign up

Export Citation Format

Share Document