structural rearrangements
Recently Published Documents


TOTAL DOCUMENTS

636
(FIVE YEARS 154)

H-INDEX

55
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
A. I. Chekunova ◽  
S. Yu. Sorokina ◽  
E. A. Sivoplyas ◽  
G. N. Bakhtoyarov ◽  
P. A. Proshakov ◽  
...  

As assemblies of genomes of new species with varying degrees of relationship appear, it becomes obvious that structural rearrangements of the genome, such as inversions, translocations, and transposon movements, are an essential and often the main source of evolutionary variation. In this regard, the following questions arise. How conserved are the regulatory regions of genes? Do they have a common evolutionary origin? And how and at what rate is the functional activity of genes restored during structural changes in the promoter region? In this article, we analyze the evolutionary history of the formation of the regulatory region of the ras85D gene in different lineages of the genus Drosophila, as well as the participation of mobile elements in structural rearrangements and in the replacement of specific areas of the promoter region with those of independent evolutionary origin. In the process, we substantiate hypotheses about the selection of promoter elements from a number of frequently repeated motifs with different degrees of degeneracy in the ancestral sequence, as well as about the restoration of the minimum required set of regulatory sequences using a conversion mechanism or similar.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Florian Spieckermann ◽  
Daniel Şopu ◽  
Viktor Soprunyuk ◽  
Michael B. Kerber ◽  
Jozef Bednarčík ◽  
...  

AbstractThe atomistic mechanisms occurring during the processes of aging and rejuvenation in glassy materials involve very small structural rearrangements that are extremely difficult to capture experimentally. Here we use in-situ X-ray diffraction to investigate the structural rearrangements during annealing from 77 K up to the crystallization temperature in Cu44Zr44Al8Hf2Co2 bulk metallic glass rejuvenated by high pressure torsion performed at cryogenic temperatures and at room temperature. Using a measure of the configurational entropy calculated from the X-ray pair correlation function, the structural footprint of the deformation-induced rejuvenation in bulk metallic glass is revealed. With synchrotron radiation, temperature and time resolutions comparable to calorimetric experiments are possible. This opens hitherto unavailable experimental possibilities allowing to unambiguously correlate changes in atomic configuration and structure to calorimetrically observed signals and can attribute those to changes of the dynamic and vibrational relaxations (α-, β- and γ-transition) in glassy materials. The results suggest that the structural footprint of the β-transition is related to entropic relaxation with characteristics of a first-order transition. Dynamic mechanical analysis data shows that in the range of the β-transition, non-reversible structural rearrangements are preferentially activated. The low-temperature γ-transition is mostly triggering reversible deformations and shows a change of slope in the entropic footprint suggesting second-order characteristics.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zirui Dong ◽  
MatthewHoi Kin Chau ◽  
Ying Li ◽  
Peng Dai ◽  
Mengmeng Shi ◽  
...  

Author(s):  
Rafael R. Khismatullin ◽  
Shahnoza Abdullayeva ◽  
Alina D. Peshkova ◽  
Khetam Sounbuli ◽  
Natalia G Evtugina ◽  
...  

Blood clots and thrombi undergo platelet-driven contraction/retraction followed by structural rearrangements. We have established quantitative relationships between the composition of blood clots and extent of contraction to determine intravital contraction of thrombi and emboli based on their content. The composition of human blood clots and thrombi was quantified using histology and scanning electron microscopy. Contracting blood clots segregated into the gradually shrinking outer layer that contains a fibrin-platelet mesh and the expanding inner portion with compacted red blood cells (RBCs). At 10% contraction, biconcave RBCs were partially compressed into polyhedral RBCs, which became dominant at 20% contraction and higher. The polyhedral/biconcave RBC ratio and the extent of contraction displayed an exponential relationship, which was used to determine the extent of intravital contraction of ex vivo thrombi, ranging from 30% to 50%. In venous thrombi, the extent of contraction decreased gradually from the older (head) to the younger (body, tail) parts. In pulmonary emboli, the extent of contraction was significantly lower than in the venous head, but was similar to the body and tail, suggesting that the emboli originate from the younger portion(s) of venous thrombi. The extent of contraction in arterial cerebral thrombi was significantly higher than in the younger parts of venous thrombi (body, tail) and pulmonary emboli, but was indistinguishable from the older part (head). A novel tool, named the "contraction ruler," has been developed to use the composition of ex vivo thrombi to assess the extent of their intravital contraction, which contributes to the pathophysiology of thromboembolism.


2021 ◽  
Author(s):  
Roberto Patarca ◽  
William A. Haseltine

The SARS-CoV-2 pandemic continues to be driven by viral variants. Most research has focused on structural proteins and on site-specific mutations. Here, we describe recombination events involving genomic terminal sequences in SARS-CoV-2 and related viruses leading to structural rearrangements in terminal and coding regions and discuss their potential contributions to viral variation, replication, pathogenicity, and immune evasion.


2021 ◽  
Author(s):  
Dhiraj Mannar ◽  
James W. Saville ◽  
Zehua Sun ◽  
Xing Zhu ◽  
Michelle M. Marti ◽  
...  

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we report the discovery of a novel antibody fragment (VH ab6) that neutralizes all major variants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dylan P. Noone ◽  
Tijn T. van der Velden ◽  
Thomas H. Sharp

The pentraxin family of proteins includes C-reactive protein (CRP), a canonical marker for the acute phase inflammatory response. As compared to normal physiological conditions in human serum, under conditions associated with damage and inflammation, such as acidosis and the oxidative burst, CRP exhibits modulated biochemical properties that may have a structural basis. Here, we explore how pH and ligand binding affect the structure and biochemical properties of CRP. Cryo-electron microscopy was used to solve structures of CRP at pH 7.5 or pH 5 and in the presence or absence of the ligand phosphocholine (PCh), which yielded 7 new high-resolution structures of CRP, including pentameric and decameric complexes. Structures previously derived from crystallography were imperfect pentagons, as shown by the variable angles between each subunit, whereas pentameric CRP derived from cryoEM was found to have C5 symmetry, with subunits forming a regular pentagon with equal angles. This discrepancy indicates flexibility at the interfaces of monomers that may relate to activation of the complement system by the C1 complex. CRP also appears to readily decamerise in solution into dimers of pentamers, which obscures the postulated binding sites for C1. Subtle structural rearrangements were observed between the conditions tested, including a putative change in histidine protonation that may prime the disulphide bridges for reduction and enhanced ability to activate the immune system. Enzyme-linked immunosorbent assays showed that CRP had markedly increased association to the C1 complex and immunoglobulins under conditions associated with acidosis, whilst a reduction in the Ca2+ concentration lowered this pH-sensitivity for C1q, but not immunoglobulins, suggesting different modes of binding. These data suggest a model whereby a change in the ionic nature of CRP and immunological proteins can make it more adhesive to potential ligands without large structural rearrangements.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1679
Author(s):  
Olivier Nicolas Lemaire ◽  
Marie-Caroline Müller ◽  
Jörg Kahnt ◽  
Tristan Wagner

Ketol-acid reductoisomerase (KARI) orchestrates the biosynthesis of branched-chain amino acids, an elementary reaction in prototrophic organisms as well as a valuable process in biotechnology. Bacterial KARIs belonging to class I organise as dimers or dodecamers and were intensively studied to understand their remarkable specificity towards NADH or NADPH, but also to develop antibiotics. Here, we present the first structural study on a KARI natively isolated from a methanogenic archaea. The dodecameric structure of 0.44-MDa was obtained in two different conformations, an open and close state refined to a resolution of 2.2-Å and 2.1-Å, respectively. These structures illustrate the conformational movement required for substrate and coenzyme binding. While the close state presents the complete NADP bound in front of a partially occupied Mg2+-site, the Mg2+-free open state contains a tartrate at the nicotinamide location and a bound NADP with the adenine-nicotinamide protruding out of the active site. Structural comparisons show a very high conservation of the active site environment and detailed analyses point towards few specific residues required for the dodecamerisation. These residues are not conserved in other dodecameric KARIs that stabilise their trimeric interface differently, suggesting that dodecamerisation, the cellular role of which is still unknown, might have occurred several times in the evolution of KARIs.


2021 ◽  
Author(s):  
R. I. M. Dunbar

In hunter-gatherer societies, social friction can be alleviated by families moving between bands. However, the transition to a settled village lifestyle (usually associated with the adoption of agriculture) removes this possibility. Living in large communities necessitates the development of behavioral mechanisms for defusing these stresses. I use data on the proportion of deaths that are due to violence in contemporary small-scale societies to show that these stresses increase linearly with living-group size in hunter-gatherers, but not in horticulturalists living in permanent settlements, where instead there appear to be a series of ‘glass ceilings’ below which homicide rates oscillate. These glass ceilings correlate with the adoption of behavioral mechanisms that allow social friction to be managed. These results suggest that the transition to a settled lifestyle may be more challenging than previously assumed and that the increases in settlement size that followed the first villages necessitated what amounts to a series of structural rearrangements so as to manage inter-individual discord.


Sign in / Sign up

Export Citation Format

Share Document