Planta Medica
Latest Publications


TOTAL DOCUMENTS

24461
(FIVE YEARS 2187)

H-INDEX

109
(FIVE YEARS 22)

Published By Georg Thieme Verlag Kg

1439-0221, 0032-0943
Updated Friday, 19 November 2021

Planta Medica ◽  
2021 ◽  
Author(s):  
Matteo Politi ◽  
Giorgia Tresca ◽  
Luigi Menghini ◽  
Claudio Ferrante

AbstractThe herbal preparation ayahuasca has been an important part of ritual and healing practices, deployed to access invisible worlds in several indigenous groups in the Amazon basin and among mestizo populations of South America. The preparation is usually known to be composed of two main plants, Banisteriopsis caapi and Psychotria viridis, which produce both hallucinogenic and potent purging and emetic effects; currently, these are considered its major pharmacological activities. In recent decades, the psychoactive and visionary effect of ayahuasca has been highly sought after by the shamanic tourism community, which led to the popularization of ayahuasca use globally and to a cultural distancing from its traditional cosmological meanings, including that of purging and emesis. Further, the field of ethnobotany and ethnopharmacology has also produced relatively limited data linking the phytochemical diversity of ayahuasca with the different degrees of its purging and emetic versus psychoactive effects. Similarly, scientific interest has also principally addressed the psychological and mental health effects of ayahuasca, overlooking the cultural and pharmacological importance of the purging and emetic activity. The aim of this review is therefore to shed light on the understudied purging and emetic effect of ayahuasca herbal preparation. It firstly focuses on reviewing the cultural relevance of emesis and purging in the context of Amazonian traditions. Secondly, on the basis of the main known phytochemicals described in the ayahuasca formula, a comprehensive pharmacological evaluation of their emetic and purging properties is presented.


Planta Medica ◽  
2021 ◽  
Author(s):  
Matthias Lechtenberg ◽  
Jandirk Sendker ◽  
Lisa Kastner ◽  
Andreas Hensel

AbstractA systematic survey of Aralia spinosa (Araliaceae), covering an entire growing season and including aboveground organs at various developmental stages, revealed that only about half of all samples collected showed cyanogenesis. Cyanogenesis was detected in inflorescences and leaves but is apparently restricted to certain harvest times or developmental stages. The structurally unusual triglochinin, characterized by a hex-2-enedioic acid partial structure, was the only cyanogenic glycoside detected. This is the first description of triglochinin in this species and in the family of Araliaceae. Triglochinin is biogenetically derived from tyrosine, which is in good agreement with the few cyanogenic glycosides previously detected in members of the Araliaceae family. Triglochinin was identified, characterized, and quantified by modern chromatographic methods, and the amount of enzymatically releasable hydrocyanic acid was determined qualitatively and quantitatively. Two isomers of triglochinin were detected chromatographically at minor levels. The isomeric pattern agreed well with literature data from other triglochinin-containing plants. This was confirmed in the two species, Triglochin maritima and Thalictrum aquilegiifolium, which were comparatively studied. In the case of A. spinosa, inflorescence buds harvested in July showed the highest content of triglochinin, just under 0.2% on a dry weight basis. The detection of triglochinin adds to the knowledge of toxicological properties and the dereplication of U(H)PLC/MS² data provides a comprehensive phytochemical profile of A. spinosa.


Planta Medica ◽  
2021 ◽  
Author(s):  
Diego Pinto de Oliveira ◽  
Eliana de Faria Garcia ◽  
Mariana Assíria de Oliveira ◽  
Luiza C. M. Candido ◽  
Fernanda M. Coelho ◽  
...  

Abstract cis-Aconitic acid is a constituent from the leaves of Echinodorus grandiflorus, a medicinal plant traditionally used in Brazil to treat inflammatory conditions, including arthritic diseases. The present study aimed to investigate the anti-arthritic effect of cis-aconitic acid in murine models of antigen-induced arthritis and monosodium urate-induced gout. The possible underlying mechanisms of action was evaluated in THP-1 macrophages. Oral treatment with cis-aconitic acid (10, 30, and 90 mg/kg) reduced leukocyte accumulation in the joint cavity and C-X-C motif chemokine ligand 1 and IL-1β levels in periarticular tissue. cis-Aconitic acid treatment reduced joint inflammation in tissue sections of antigen-induced arthritis mice and these effects were associated with decreased mechanical hypernociception. Administration of cis-aconitic acid (30 mg/kg p. o.) also reduced leukocyte accumulation in the joint cavity after the injection of monosodium urate crystals. cis-Aconitic acid reduced in vitro the release of TNF-α and phosphorylation of IκBα in lipopolysaccharide-stimulated THP-1 macrophages, suggesting that inhibition of nuclear factor kappa B activation was an underlying mechanism of cis-aconitic acid-induced anti-inflammatory effects. In conclusion, cis-aconitic acid has significant anti-inflammatory effects in antigen-induced arthritis and monosodium urate-induced arthritis in mice, suggesting its potential for the treatment of inflammatory diseases of the joint in humans. Additionally, our findings suggest that this compound may contribute to the anti-inflammatory effect previously reported for E. grandiflorus extracts.


Planta Medica ◽  
2021 ◽  
Author(s):  
Frances Widjaja ◽  
Yasser Alhejji ◽  
Ivonne M. C. M. Rietjens

AbstractPyrrolizidine alkaloids (PAs) are a large group of plant constituents of which especially the 1,2- unsaturated PAs raise a concern because of their liver toxicity and potential genotoxic carcinogenicity. This toxicity of PAs depends on their kinetics. Differences in absorption, distribution, metabolism, and excretion (ADME) characteristics of PAs may substantially alter the relative toxicity of PAs. As a result, kinetics will also affect relative potency (REP) values. The present review summarizes the current state-of-the art on PA kinetics and resulting consequences for toxicity and illustrates how physiologically-based kinetic (PBK) modelling can be applied to take kinetics into account when defining the relative differences in toxicity between PAs in the in vivo situation. We conclude that toxicokinetics play an important role in the overall toxicity of pyrrolizidine alkaloids. and that kinetics should therefore be considered when defining REP values for combined risk assessment. New approach methodologies (NAMs) can be of use to quantify these kinetic differences between PAs and their N-oxides, thus contributing to the 3Rs (Replacement, Reduction and Refinement) in animal studies.


Planta Medica ◽  
2021 ◽  
Author(s):  
Huimiao Bian ◽  
Yang Wang ◽  
Peng Wu ◽  
Na Han ◽  
Linlin Wang ◽  
...  

AbstractAn abdominal aortic aneurysm is a life-threatening cardiovascular disorder caused by dissection and rupture. No effective medicine is currently available for the > 90% of patients whose aneurysms are below the surgical threshold. The present study investigated the impact of rosmarinic acid, salvianolic acid C, or salvianolic acid B on experimental abdominal aortic aneurysms. Abdominal aortic aneurysms were induced in apolipoprotein E-deficient mice via infusion of angiotensin II for 4 wks. Rosmarinic acid, salvianolic acid C, salvianolic acid B, or doxycycline as a positive control was provided daily through intraperitoneal injection. Administration of rosmarinic acid was found to decrease the thickness of the aortic wall, as determined by histopathological assay. Rosmarinic acid also exhibited protection against elastin fragmentation in aortic media and down-regulated cell apoptosis and proliferation in the aortic adventitia. Infiltration of macrophages, T lymphocytes, and neutrophils in aortic aneurysms was found, especially at the aortic adventitia. Rosmarinic acid, salvianolic acid C, or salvianolic acid B inhibited the infiltration on macrophages specifically, but these compounds did not influence T lymphocytes and neutrophils. Expression of matrix metalloproteinase 9 and macrophage migration inhibitory factor significantly increased in aortic aneurysms. Rosmarinic acid and salvianolic acid C decreased the expression of matrix metalloproteinase-9 in media, and rosmarinic acid also tended to reduce migration inhibitory factor expression. Further then, partial least squares-discriminate analysis was used to classify metabolic changes among different treatments. Rosmarinic acid affected most of the metabolites in the biosynthesis of the citrate cycle, fatty acid pathway significantly. Our present study on mice demonstrated that rosmarinic acid inhibited multiple pathological processes, which were the key features important in abdominal aortic aneurysm formation. Further study on rosmarinic acid, the novel candidate for aneurysmal therapy, should be undertaken to determine its potential for clinical use.


Planta Medica ◽  
2021 ◽  
Vol 87 (14) ◽  
pp. 1120-1121
Author(s):  
Jörg Heilmann
Keyword(s):  

Planta Medica ◽  
2021 ◽  
Vol 87 (14) ◽  
pp. 1123-1127
Author(s):  
Jürg Gertsch
Keyword(s):  

Planta Medica ◽  
2021 ◽  
Author(s):  
Dieter Schrenk ◽  
Jörg Fahrer ◽  
Ashley Allemang ◽  
Peter Fu ◽  
Ge Lin ◽  
...  

AbstractThis paper reports on the major contributions and results of the 2nd International Workshop of Pyrrolizidine Alkaloids held in September 2020 in Kaiserslautern, Germany. Pyrrolizidine alkaloids are among the most relevant plant toxins contaminating food, feed, and medicinal products of plant origin. Hundreds of PA congeners with widespread occurrence are known, and thousands of plants are assumed to contain PAs. Due to certain PAsʼ pronounced liver toxicity and carcinogenicity, their occurrence in food, feed, and phytomedicines has raised serious human health concerns. This is particularly true for herbal teas, certain food supplements, honey, and certain phytomedicinal drugs. Due to the limited availability of animal data, broader use of in vitro data appears warranted to improve the risk assessment of a large number of relevant, 1,2-unsaturated PAs. This is true, for example, for the derivation of both toxicokinetic and toxicodynamic data. These efforts aim to understand better the modes of action, uptake, metabolism, elimination, toxicity, and genotoxicity of PAs to enable a detailed dose-response analysis and ultimately quantify differing toxic potencies between relevant PAs. Accordingly, risk-limiting measures comprising production, marketing, and regulation of food, feed, and medicinal products are discussed.


Planta Medica ◽  
2021 ◽  
Author(s):  
Chun Lei ◽  
Ya-Nan Li ◽  
Jia-Nan Li ◽  
Yu-Bo Zhou ◽  
Ming-Jun Cui ◽  
...  

AbstractTwo new maytansinoids, N-methyltreflorine (1) and methyltrewiasine (2), were isolated from the dried fruits of Trewia nudiflora, together with three known congeners (3 – 5). Their structures were elucidated by spectroscopic methods, and the absolute configuration of 1 and 2 was determined by X-ray crystallographic analysis. Compounds 1 – 5 exhibited strong cytotoxicity against human tumor cell lines, including HeLa, MV-4 – 11, and MCF-7, with IC50 values ranging from 0.12 to 11 nM. Compounds 1 and 4 also showed inhibitory activity against the MCF-7/ADR cell line with IC50 values of 13 and 28 nM, respectively. Compounds 1 and 2 significantly inhibited tubulin polymerization in vitro with IC50 values of 3.6 and 3.2 µM, respectively.


Planta Medica ◽  
2021 ◽  
Author(s):  
Daniel Augustynowicz ◽  
Magdalena Podolak ◽  
Klaus Peter Latté ◽  
Michał Tomczyk

Abstract Potentilla alba is a valuable medicinal plant that has been highly praised even before its first appearance in herbal books; however, it has now been forgotten in Western Europe. Currently, this species is used in Eastern Europe as a remedy to treat dysentery and various thyroid gland dysfunctions. The present review summarizes the advances in the phytochemical, pharmacological, and toxicological research related to this plant species. Clinical trials that have been conducted to date support its traditional use for treating thyroid disorders, although its exact mechanism of action, bioavailability, and pharmacokinetics data are missing.


Sign in / Sign up

Export Citation Format

Share Document