ENHANCING ADEQUACY OF GRADING STUDY PROJECTS ON THE BASE OF PARAMETRIC RELAXATION OF PAIRWISE COMPARISONS

2021 ◽  
Vol 1 ◽  
pp. 122-133
Author(s):  
Alexey V. Oletsky ◽  
◽  
Mikhail F. Makhno ◽  
◽  

A problem of automated assessing of students’ study projects is regarded. A heuristic algorithm based on fuzzy estimating of projects and on pairwise comparisons among them is proposed. For improving adequacy and naturalness of grades, an approach based on introducing a parameter named relaxation parameter was suggested in the paper. This enables to reduce the spread between maximum and minimum values of projects in comparison with the one in the standard scale suggested by T. Saati. Reasonable values of this parameter were selected experimentally. For estimating the best alternative, a center of mass of a fuzzy max-min composition should be calculated. An estimation algorithm for a case of non-transitive preferences based on getting strongly connected components and on pairwise comparisons between them is also suggested. In this case, relaxation parameters should be chosen separately for each subtask. So the combined technique of evaluating alternatives proposed in the paper depends of the following parameters: relaxation parameters for pairwise comparisons matrices within each strongly connected components; relaxation parameter for pairwise comparisons matrices among strongly connected components; membership function for describing the best alternative.

2019 ◽  
Vol 8 (S1) ◽  
pp. S82-S109 ◽  
Author(s):  
Jan Treur

AbstractIn this paper, it is addressed how network structure can be related to asymptotic network behavior. If such a relation is studied, that usually concerns only strongly connected networks and only linear functions describing the dynamics. In this paper, both conditions are generalized. A couple of general theorems is presented that relates asymptotic behavior of a network to the network’s structure characteristics. The network structure characteristics, on the one hand, concern the network’s strongly connected components and their mutual connections; this generalizes the condition of being strongly connected to a very general condition. On the other hand, the network structure characteristics considered generalize from linear functions to functions that are normalized, monotonic, and scalar-free, so that many nonlinear functions are also covered. Thus, the contributed theorems generalize the existing theorems on the relation between network structure and asymptotic network behavior addressing only specific cases such as acyclic networks, fully, and strongly connected networks, and theorems addressing only linear functions. This paper was invited as an extended (by more than 45%) version of a Complex Networks’18 conference paper. In the discussion section, the differences are explained in more detail.


Sign in / Sign up

Export Citation Format

Share Document