scholarly journals PRACTICAL USE OF SORPTION PROPERTIES OF NATURAL MINERAL IN LIVESTOCK

2021 ◽  
pp. 95-100
2010 ◽  
Vol 80 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Pedro Gonçalves ◽  
João R. Araújo ◽  
Fátima Martel

We studied the effect of some mineral waters and some of their constituents on the apical uptake of 14C-butyrate (14C-BT) and 3H-O-methyl-D-glucose (3H-OMG) by Caco-2 cells. Uptake of 14C-BT increased after a 20-minute exposure to 1 % (v/v) distilled water, and, compared to distilled water, it was decreased by Pedras Salgadas® 1 % (v/v) and Melgaço® 5 % (v/v), and increased by Vidago® 5 % (v/v). Moreover, it increased after a 48-hour exposure to Vidago® or Melgaço® waters (5 % (v/v)). Also, uptake of 14C-BT was reduced after a 20-minute exposure to MgCl2, MgSO4, or CaCl2. Uptake of 3H-OMG was reduced after a 20-minute exposure to Melgaço® water [1 % (v/v)], when compared to distilled water. Also, a 48-hour exposure to Pedras Salgadas® or Melgaço® water (5 % (v/v)) increased and decreased uptake, respectively. Finally, uptake of 3H-OMG decreased after a 20-minute exposure to MgSO4 or NaF. In conclusion, uptake of 14C-BT and 3H-OMG by Caco-2 cells is differently modulated by distinct mineral waters.


2020 ◽  
Vol 16 (71) ◽  
pp. 124
Author(s):  
P. N. Skrypnykov ◽  
T. P. Skrypnikova ◽  
G. A. Loban ◽  
O. V. Gancho ◽  
L. M. Khavalkina ◽  
...  

Polymer ◽  
2020 ◽  
Vol 190 ◽  
pp. 122191
Author(s):  
Iwona Jakubowska ◽  
Stanisław Popiel ◽  
Mateusz Szala ◽  
Michał Czerwiński ◽  
Maciej Chrunik ◽  
...  

2013 ◽  
Vol 173 ◽  
pp. 92-98 ◽  
Author(s):  
Zhuojun Yan ◽  
Hao Ren ◽  
Heping Ma ◽  
Rongrong Yuan ◽  
Ye Yuan ◽  
...  

1978 ◽  
Vol 10 (1) ◽  
pp. 63-64
Author(s):  
V. F. Zheltobryukhov ◽  
L. Ya. Kurdyukova ◽  
T. V. Druzhinina ◽  
�. Z. Fainberg ◽  
A. I. Lopatina ◽  
...  
Keyword(s):  

Nature ◽  
1993 ◽  
Vol 361 (6410) ◽  
pp. 303-304
Author(s):  
Ulrich Christensen
Keyword(s):  

Author(s):  
Tobias Necke ◽  
Maximilian Trapp ◽  
Stefan Lauterbach ◽  
Georg Amthauer ◽  
Hans-Joachim Kleebe

Abstract In this paper, we report on electron microscopy studies of single crystals of the natural mineral lorándite, TlAsS2. The main focus of this investigation was to address the question as to whether those lorándite crystals are chemically and structurally homogeneous, in order to be utilized as an effective neutrino detector within the lorándite experiment (LOREX) project. Apart from few secondary minerals, being present only at the surface of the lorándite samples, scanning electron microscopy (SEM) indicated homogeneous crystals. Similarly, transmission electron microscopy (TEM) imaging revealed a homogenous and undisturbed crystal structure, with the only exception of local coffee-bean contrasts; however, rarely observed. These specific contrast variations are known to be a typical strain indicator caused by a local deformation of the crystal lattice. Energy-dispersive X-ray spectroscopy (EDS) in conjunction with electron energy-loss spectroscopy (EELS) did not show any significant chemical difference when analysing regions on or off those coffee-bean features, indicating a chemically homogenous mineral. Since the presence of lattice disturbing secondary phase precipitates could be excluded by imaging and complementary chemical analysis, crystal defects such as dislocations and stacking faults or minor fluid inclusions are discussed as the probable origin of this local elastic strain. The experimental results confirm that the studied lorándite single crystals fulfil all structural and chemical requirements to be employed as the natural mineral that allows to determine solar neutrino fluxes. In addition, critical issues regarding the rather challenging sample preparation of lorándite are reported and a quantification of the maximum tolerable electron dose in the TEM is presented, since lorándite was found to be sensitive with respect to electron beam irradiation. Furthermore, the limits of EDS measurements due to peak overlapping are shown and discussed utilizing the case of Pb in lorándite. In this regard, a comparison with the Tl- and Pb-containing natural mineral hutchinsonite, TlPbAs5S9, is also included.


Sign in / Sign up

Export Citation Format

Share Document