distilled water
Recently Published Documents


TOTAL DOCUMENTS

4570
(FIVE YEARS 1733)

H-INDEX

64
(FIVE YEARS 15)

Plant Disease ◽  
2022 ◽  
Author(s):  
Xiaosheng Zhao ◽  
Chaorong Meng ◽  
Xiang-Yu Zeng ◽  
Zaifu Yang ◽  
Xue-Jun Pan

Magnolia grandiflora is a widely cultivated ornamental tree in China. In June 2020, a leaf blight disease was observed on M. grandiflora in Guizhou University (26° 44' 57'' N, 106° 65' 94'' E) in Guiyang, China. The initial symptoms on leaves were expanding round necrotic lesions with a grey center and dark brown edge, and twigs were withered when the disease was serious. Of the 100 plants surveyed 65% had symptoms. To isolate the potential causal pathogen, diseased leaves were collected from an M. grandiflora tree at Guizhou University. Isolations from made form the junction between healthy and symptomatic tissue and disinfested by immersing in 75% ethanol for 30 seconds, 3% NaOCl for 2 minutes, and then washed 3 times in sterile distilled water. Symptomatic tissue was then plated on potato dextrose agar (PDA) and incubated at 25ºC with 12-hour light for 3–5 days. Three isolates (GUCC 21235.1, GUCC 21235.2 and GUCC 21235.3) were obtained. Colonies on PDA after 7 d were dark brown, pycnidia embedded in the mydelium were dark brown to black, single and separated. Conidiophores were transparent measuring 7–12.5 × 2.5–4.5 µm (mean = 9.5 × 3.6 µm, n = 30) in length. Conidia were transparent becoming brown when mature with a diaphragm, with round ends measuring, 21–27 × 10–15 µm (mean = 23.6 × 12.6 µm, n = 30). To confirm the pathogen by molecular characterization, four genes or DNA fragments, ITS, LSU, tef1 and β-tubulin, were amplified using the following primer pairs: ITS4-F/ ITS5-R (White et al., 1990), LR0R/ LR5 (Rehner & Samuels, 1994), EF1-688F/ EF1-986R (Carbone & Kohn, 1999) and Bt2a/ Bt2b (O'Donnell & Cigelnik, 1997). The sequences of four PCR fragments of GUCC 21235.1 were deposited in GenBank, and the accession numbers were MZ519778 (ITS), MZ520367 (LSU), MZ508428 (tef1) and MZ542354 (β-tubulin). Bayesian inference was performed based on a concatenated dataset of ITS, LSU, tef1 and β-tubulin gene using MrBayes 3.2.10, and the isolates GUCC 21235.1 formed a single clade with the reference isolates of Diplodia mutila (Diplodia mutila strain CBS 112553). BLASTn analysis indicated that the sequences of ITS, LSU, tef1 and β-tubulin revealed 100% (546/546 nucleotides), 99.82% (568/569 nucleotides), 100% (302/302 nucleotides), and 100% (437/437 nucleotides) similarity with that of D. mutila in GenBank (AY259093, AY928049, AY573219 and DQ458850), respectively. For confirmation of the pathogenicity of this fungus, a conidial suspension (1×105 conidia mL-1) was prepared from GUCC 21235.1, and healthy leaves of M. grandiflora trees were surface-disinfested by 75% ethanol, rinsed with sterilized distilled water and dried by absorbent paper. Small pieces of filter paper (5 mm ×5 mm), dipped with 20 µL conidial suspension (1×105 conidia mL-1) or sterilized distilled water (as control), were placed on the bottom-left of the leaves for inoculation. Then the leaves were sprayed with sterile distilled water, wrapped with a plastic film and tin foil successively to maintain high humidity in the dark dark. After 36 h, the plastic film and tin foil on the leaves was removed, and the leaves were sprayed with distilled water three times each day at natural condition (average temperature was about 25 °C, 14 h light/10 h dark). After 10 days of inoculation, the same leaf blight began to appear on the leaves inoculated with conidial suspension. No lesion was appeared on the control leaves. The fungus was re-isolated from the symptomatic tissue. Based on the morphological information and molecular characterization, the isolate GUCC 21235.1 is D. mutila. Previous reports indicated that D. mutila infects a broad host range and gives rise to a canker disease of olive, apple and jujube (Úrbez-Torres et al., 2013; Úrbez-Torres et al., 2016; Feng et al., 2019). This is the first report of leaf blight on M. grandiflora caused by D. mutila in China.


Plant Disease ◽  
2022 ◽  
Author(s):  
Kecheng Xu ◽  
Ruiqi Zhang ◽  
Xue Li ◽  
Jinglong Zhang ◽  
Hang Zhao ◽  
...  

Eucalyptus species are widely planted in the tropics and subtropics, and eucalyptus is among the most important cash crop in Southern China. One of the most important diseases on eucalyptus is Ceratocystis wilt, caused by the fungus Ceratocystis fimbriata Ellis & Halst., and the genus name Chalaropsis has been proposed for anamorphs of Ceratocystis species (de Beer et al. 2014). During April 2018, severely infected Eucalyptus robusta trees were observed in Kunming, Yunnan Province, China. Symptomatic trees initially exhibited yellowing and wilting of foliage on individual branches, then spread to the whole canopy, sometimes followed by death of the whole tree. Reddish-brown to dark-brown discoloration in the woody xylem of affected trees, sometimes a grayish white layer of fungal growth may be seen. The disease was observed on 16% of trees surveyed. The base of trunks with typical symptoms were collected, then the discolored xylem tissues were surface disinfected with 75% ethanol for 30 s and 0.1% mercuric chloride (HgCl2) solution for 2 min, rinsed three times with sterile distilled water, plated onto potato dextrose agar (PDA) medium, and incubated at 25°C. After 6 days, a fungus was consistently observed growing from the tissue. Three isolates were obtained. In culture, colonies reaching 54mm diam within 15 days, mycelium initially white, then becoming celadon. Endoconidia unicellular, smooth, cylindrical, straight, biguttulate, 11.21 - 32.26 × 4.12 - 5.25 μm. Phialides produced on short, septate, aerial hyphae, lageniform and chain of phialoconidia (3.62 - 5.89 × 31.39 - 65.76 μm) were also observed. Chlamydospores (11.45 - 14.26 × 10.06 - 12.22 μm) were single, dark, thick-walled. Morphological characteristics of the fungus were consistent with the description of Chalaropsis thielavioides (Paulin-Mahady et al. 2002). The two of three isolates were used for molecular identification and genomic DNA was extracted from isolates (EKY2-2-1, EKY2-2-2) using the chelex-100 method (Xu et al. 2020). The ITS region of rDNA was sequenced using the procedures of Thorpe et al. (2005). Analysis of ITS sequence data (GenBank accessions MW242701, MW242702) showed that the isolates were 99% - 100% homologous to isolates of C. thielavioides from Hevea rubber, Monstera deliciosa L. and ants in China and Rosa sp. in Australia (GenBank accessions KT963172, KJ511482, KT963173 and KX954598) by BLAST analysis. Neighbor-joining (NJ) phylogenetic analysis were performed using MEGA 6.06 based on ITS sequences (Fig 1), the evolutionary distances were computed using the Maximum Composite Likelihood method. Analyses showed that both isolates (EKY2-2-1, EKY2-2-2) located on the same clade with all C. thielavioides, and clustered with the C. thielavioides strains with high bootstrap support (97% - 100%). Therefore, the fungus was identified as C. thielavioides based on morphology and molecular evidences. Pathogenicity of C. thielavioides was tested by inoculation of six one-year-old pot grown Eucalyptus citriodora seedlings. The sterilized soil of six seedlings was inoculated by drenching with 20 ml spore suspension (2.0 × 106 spores / ml). Control plants were inoculated with 20 ml of sterile distilled water. The seedlings were kept in a controlled greenhouse at 25°C and watered weekly. After one month incubation, all the isolates produced wilt symptoms, whereas control trees showed no symptoms. The original fungus was successfully re-isolated from inoculated trees and identified as C. thielavioides according to the methods described above, and no fungal growth was observed in the controls, thus satisfying Koch's postulates. Although wilt and canker caused by Ceratocystis fimbriata on eucalyptus have been previously reported in Brazil, Uruguay, Uganda, China and Pakistan (Ferreira et al. 1999; Li et al. 2014; Alam et al. 2017), eucalyptus wilt caused by C. thielavioides has not been reported anywhere. Also, wilt of rubber tree and postharvest rot on carrot caused by C. thielavioides have been reported (Li et al. 2021; Xu et al. 2020). To our knowledge, this is the first report of eucalyptus wilt caused by C. thielavioides in China.


2022 ◽  
Vol 8 (1) ◽  
pp. 10-16
Author(s):  
R. Brovko ◽  
L. Mushinskii ◽  
V. Doluda

The continuous depletion of hydrocarbon sources contributes to a wide study of the use of biorenewable raw materials to obtain synthetic hydrocarbons from them. Isopropyl alcohol is traditionally produced by chemical hydration of propylene, however, with the development of biotechnology, broad prospects have opened for its production by fermentation of glucose-containing substrates obtained from agricultural and forestry waste. This way, isopropyl alcohol can also be considered as a bio-renewable raw material and it can be widely used for the production of chemical synthesis products, including hydrocarbons. One of the possible ways of processing isopropyl alcohol is the catalytic transformation of alcohols on zeolites and zeotypes of various natures with the formation of hydrocarbons. Currently, zeolite H-ZSM-5 and zeotype SAPO-34 are the most frequently used catalysts for the transformation of alcohols into hydrocarbons, however, their rapid deactivation due to the formation of a carbon residue remains an unresolved problem. The formation of core-shell structures with H-ZSM-5 zeolite in center and an outer shell consist of H-Beta zeolite with large pores can reduce the deactivation of zeolite because of increase in reagents diffusion rate. In this article is devoted to synthesis of ZSM-5/Beta sample with a core-shell structure, as well as a study of its catalytic and physicochemical properties. To form the H-ZSM-5 zeolite, a colloidal solution of tetrapropylammonium hydroxide, a colloidal solution of silicon oxide, aluminum oxide, sodium hydroxide of distilled water was used. The colloidal solution was placed in an autoclave, heated to 140 °C and kept at this temperature for 48 hours, after which the crystals formed were centrifuged, washed with distilled water and kept in a 1M solution of ammonium nitrate for a day. Then, to form the H-Beta layer, H-ZSM-5 was suspended in a colloidal solution consisting of tetraethylammonium hydroxide, tetraethylammonium chloride, a colloidal solution of silicon oxide, sodium hydroxide, sodium chloride and distilled water. The suspension was placed in an autoclave and kept at a temperature of 140 °C for 48 hours, followed by centrifugation, washing in distilled water, suspended in a 1M solution of ammonium nitrate, with repeated washing with distilled water, drying and calcining at 600 °C. Testing of the synthesized of H-ZSM-5/Beta zeolite sample showed a significant decrease in the rate of deactivation compared to the synthesized sample of H-ZSM-5; it is also necessary to note a slight increase in the fraction of liquid hydrocarbons for the sample H-ZSM-5/Beta.


2022 ◽  
Vol 116 (1) ◽  
pp. 42-47
Author(s):  
Eva Salanci ◽  
Fils Andriamainty ◽  
Dominika Adamove ◽  
Roman Mikláš

The critical micelle concentration (CMC) of the selected surfactant belonging to quaternary ammonium salts with chemical designation N,N-dimethyl-N-(3-((1R,5S)-1,8,8-trimethyl-2,4-dioxo-3-azabicyclo[3.2.1]octane-3yl)propyl)hexadecane-1-amine bromide was determined. Simultaneously, the effect of the addition of various concentrations of NaCl, KCl, NaBr, and KBr salts on the CMC value of the substance was observed and compared with those obtained in an aqueous solution at T = 296,15 K. Based on the results obtained, it was concluded that NaCl and KCl salts decreased the critical micelle concentration, while NaBr and KBr salts did not support micellization and CMC values therefore increased. In the case of solutions of a substance in the salt environment, when compared to the substance's solution in distilled water, a decrease in partial molar volume was observed. From the concentration density dependencies of the substance, an ionization degree of α was determined. Finally, the molar Gibbs energy ∆G° was also calculated and found negative for all salt solutions, while increase with their increasing concentration.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 178
Author(s):  
Roksana Kruszakin ◽  
Paweł Migdal

So far, larval rearing in vitro has been an important method in the assessment of bee toxicology, particularly in pesticide risk assessment. However, natural products are increasingly used to control honey bee pathogens or to enhance bee immunity, but their effects on honey bee larvae are mostly unknown. In this study, laboratory studies were conducted to determine the effects of including selected aqueous plant infusions in the diet of honey bee (Apis mellifera L.) larvae in vitro. The toxicity of infusions from three different plant species considered to be medicinal plants was evaluated: tansy (Tanacetum vulgare L.), greater celandine (Chelidonium majus L.), and coriander (Coriandrum sativum L.). The impact of each on the survival of the larvae of honey bees was also evaluated. One-day-old larvae were fed a basal diet consisting of distilled water, sugars (glucose and fructose), yeast extract, and freeze-dried royal jelly or test diets in which distilled water was replaced by plant infusions. The proportion of the diet components was adjusted to the age of the larvae. The larvae were fed twice a day. The experiment lasted seven days. Significant statistical differences in survival rates were found between groups of larvae (exposed or not to the infusions of tansy, greater celandine, and coriander). A significant decrease (p < 0.05) in the survival rate was observed in the group with the addition of a coriander herb infusion compared to the control. These results indicate that plant extracts intended to be used in beekeeping should be tested on all development stages of honey bees.


Plant Disease ◽  
2022 ◽  
Author(s):  
Xinhua Ding ◽  
Chongchong Lu ◽  
Mingxia Hao ◽  
Lingguang Kong ◽  
Lulu Wang ◽  
...  

Rice (Oryza sativa L.) is the largest grain crop, accounting for about 40 % of the total grain production in China. In mid-July 2021, bacterial leaf streak-like disease emerged in rice varieties Chunyou584 and Yongyou2604 in Linyi city, Shandong Province, China. Disease incidences of the disease ranged from 80% to 90% in the surveyed fields. Infected rice leaves displayed dark green to yellowish-brown water-soaked thin streaks, and a large amount of beaded yellow oozes were observed on the lesions. After drying, there were gelatinous granules that were not easy to fall off and spread between leaf veins (Fig.S1A). According to the field symptoms of this disease, it was preliminarily suspected to be rice bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc), which is a guaranteed disease in China. To isolate the causal agent, leaf discs (~1 cm2) of diseased leaves were collected from the margins of the lesions, surface sterilized and ground into pieces in sterile double distilled water. The 10-3, 10-4 and 10-5 dilutions were spread onto peptone sugar agar (PSA) and incubated at 28°C for 36 hours. Yellow mucous bacterial colonies were consistently obtained on PSA medium. To identify the pathogen, fragments of the 16S rDNA, leuS and rpoB were amplified and sequenced using the primers previously reported (Yu et al. 2021). Three strains (LY01, LY02 and LY03) showed identical colony morphology and LY01 was used for further analyses. Sequence analyses showed that the fragments of 16S rDNA (955 bp, GenBank accession number: OK261898), leuS (755 bp, GenBank accession number: OK298387) and rpoB (926 bp, GenBank accession number: OK298388) of strain LY01 shared 99.16%, 99.46% and 100% similarities with those of Pantoea ananatis TZ39 (GenBank accession numbers: CP081342.1 for 16S rDNA, MW981338.1 for leuS and MW981344.1 for rpoB), respectively, which suggest the pathogenic bacterial strain LY01 isolated is P. ananatis. In addition, the single colony of P. ananatis LY01 was shown as Fig. S2B. Furthermore, pathogenicity tests were also performed according to the following steps. Bacterial suspension at OD600=0.1 was inoculated into eight rice leaves of four healthy rice plants (Chunyou 584) at 25-33°C and 60%-80% relative humidity in the field using a clipping method (Yang et al. 2020) or spraying methods, and sterile distilled water was as negative control. The clipped leaves (Fig. S1B) and spray-inoculated leaves (Fig. S1C) showed dark green water-soaked streaks at 14 days after inoculation, respectively, which showed similar symptoms with those samples collected from the fields (Fig. S1A). On contrary, the control rice leaves remained healthy and symptomless (Fig. S2A). The bacterium was re-isolated in the inoculated rice leaves and the re-isolated bacterial isolates, which was confirmed by sequencing 16S rDNA, leuS and rpoB, incited the same symptoms as in fields, which fulfills Koch’s postulates. In the past decade, P. ananatis was reported to result in grain discoloration and leaf blight in China (Yan et al. 2010; Xue et al. 2020, Yu et al. 2021), which could result in 40% - 60% yield losses. To our best knowledge, this is the first report of the bacterial leaf streak-likely disease occurred in Shandong Province caused by P. ananatis, so we named it as Pantoea leaf streak of rice. Although P. ananatis was also reported in Zhejiang province and Jiangxi province, which caused leaf streak lesions on rice, the disease symptoms are completely different from those of Pantoea leaf streak of rice. To the best of our knowledge, this is the first report of Pantoea leaf streak of rice caused by P. ananatis. This study provides sloid evidence that Pantoea leaf streak of rice in Eastern China can be caused by the new pathogen, P. ananatis, rather than Xoc as traditionally assumed. Disease development and quarantine of the new Pantoea leaf streak of rice disease caused by P. ananatis on rice need more attention in the near future.


Plant Disease ◽  
2022 ◽  
Author(s):  
Peng Cao ◽  
Yuhui Fang ◽  
Zikui Zheng ◽  
Xia Han ◽  
Huixi Zou ◽  
...  

Dendrobium officinale Kimura L., an endangered orchid plant, is a rare and precious Chinese herb and widely used to prepare Chinese traditional medicine (Zheng et al. 2005). In August 2021, significant indications of an unknown leaf spot disease were observed on greenhouse-grown D. officinale in Yueqing of Wenzhou (28.39°N, 121.04°E), Zhejiang Province, China, the main producing location of this orchid plant. Approximately twenty percent of plants surveyed showed typical infection symptoms. Initially, the symptoms appeared as small, circular black spots. As the disease developed, the center of the lesions was sunken with a black border. To determine the causal agent, 10 symptomatic plant samples were collected and all pieces from symptomatic plant leaves were used for isolating pathogen. Tissues between healthy and necrotic area were cut into pieces (5 × 5 mm, n=10), disinfected with 10% sodium hypochlorite for 1 minute, rinsed 3 times with sterile water, and dried on sterile tissue. Samples were then placed on potato dextrose agar medium (PDA) for 1 piece per plate, and incubated at 25℃ in a dark biochemical incubator. After 3 days, hyphal tips growing from the disinfected tissues were individually transferred to new PDA plates and incubated at 25℃ in the dark. Twelve same fungal isolates were obtained from all symptomatic leave fragments, then DDO11 was chosen as a representative isolate for further study. The colonies showed white aerial mycelium after 5 days culture at 25°C on PDA. Black viscous acervuli appeared and scattered on the surface of the colony after 8-12 days culture. Conidia were spindle shape, five cells, four septa, average 29.3 × 8.5 μm (n = 30; length × width). The apical and basal cells were lighter in color, and most of them were hyaline. The middle three cells were darker in color, and mostly brown. There are 2 to 4 colorless and transparent unbranched accessory filaments at the top, 32.5 µm in average length, and the basal cell has a small appendage, 9.2 µm in average length, n=30. For fungal identification to species level, Internal transcribed spacer (ITS) region, β-tubulin gene (TUB2) and translation elongation factor-1α (TEF-1α) were amplified (Qiu et al. 2020), respectively. The ITS, TUB2 and TEF-1α gene sequences of the representative isolate DDO11 were deposited in NCBI GenBank nucleotide database with accession numbers OK631881, OK655895 and OK655896, respectively. BLASTn analysis respectively showed 100%, 100% and 99.6% nucleotide sequence identity with Neopestalotiopsis clavispora strain accessions MG729690, MG740736 and MH423940, which indicated that the pathogen belonged N. clavispora. A maximum-likelihood phylogenetic analysis based on multi-locus sequence (ITS, TUB2, and TEF-1α) using MEGA X showed the similar result (Kumar et al. 2018). To verify pathogenicity, thirty 1-year-old healthy D. officinale plants of cultivar Yandang1 were used for inoculation tests. Spores of N. clavispora DDO11 were produced on PDA for 7 days at 28°C and washed with sterile distilled water, and the concentrations were adjusted to 1 × 106 spores/ml using a hemocytometer. Fifteen surface disinfected healthy plants were inoculated by spraying the suspension (2 ml, 1 × 106 spores/ml) and covered with plastic bags for 24 h, and another 15 plants treated with sterile distilled water were used as control. The plants were placed in a humidified chamber (>95% relative humidity) at 25°C for 48 h after inoculation and kept in a growth chamber (Kiangnan, China) at 25°C with 12-h day/night cycle for 8 days (Cao et al. 2019). All inoculated leaves showed symptoms identical to those observed in the field. No disease occurred on the controls. The Neopestalotiopsis isolate was reisolated from the symptomatic leaves, and species identification was confirmed by the morphological and molecular method described above. N. clavispora has been reported to cause diseases on a variety of plants all over the world, such as strawberry (Gilardi et al. 2019), blue berry (Shi et al. 2021), Syzygium cumini (Banerjee et al. 2020), Macadamia (Qiu et al. 2020), and so on. To the best of our knowledge, this is the first report of N. clavispora causing leaf spot on D. officinale in China. This report will help us to recognize the leaf spot disease of D. officinale and establish a foundation for future studies on N. clavispora to address effective management strategies.


2022 ◽  
Vol 1 (1) ◽  
pp. 1-3
Author(s):  
O.C.U. Adumanya ◽  
◽  
B.C. Onwubuche ◽  
S.A. Nwinee ◽  
G.A. Umensofor ◽  
...  

Background/Aim: The heavy metals, cadmium (Cd) and lead (Pb), are often implicated as environmental pollutants. Therefore, the biosorption potential of Pleurotus tuber-regium in lead and cadmium polluted soil was investigated by this work. Methods: Four kilograms of each humus soil sample was weighed into eight different black nursery cellophane bags and polluted with 0.5 g, 1.0 g and 2.0 g of lead and cadmium in triplicate. Pleurotus sclerotia were then planted in these polluted soil samples, and distilled water was added ad libitum. Results: The results showed that the growth performance was dose-related in lead-polluted soil. The Pleurotus tuber regium mushroom in the lead-polluted soil samples indicated a dose-dependent absorbed lead concentration in the results. Cadmium-polluted soil samples did not support the growth of the Pleurotus tuber regium mushroom at the various concentrations of cadmium used after day 30. Therefore, the findings suggest that the Pleurotus tuber regium mushroom and its sclerotia have intrinsic properties for the absorption of lead and cadmium. Conclusion: The findings suggest that the Pleurotus tuber regium mushroom and its sclerotia have intrinsic properties for the absorption of lead and cadmium.


2022 ◽  
Vol 8 (1) ◽  
pp. 119-123
Author(s):  
Baiq Riyankati ◽  
Surya Hadi ◽  
Sri Seno Handayani

Tea tree is an essential oil-producing plant from Australia which is also found growing in several parts of Indonesia, including the island of Lombok. So far, tea tree essential oil producers on the island of Lombok do not utilize by-products in the form of hydrosol (distilled water) produced in the process of making essential oils. In this study, the characterization and analysis of the chemical composition of the hydrosol of tea tree leaves growing on the island of Lombok was carried out. The characteristic aroma of hydrosol is similar to that of tea tree essential oil. The results of the GC-MS analysis also showed that the hydrosol of tea tree leaves also had similarities with the essential oil, composed of major compounds in the form of trans-caryophyllene (28.58%), limonene (13.98%) and terpinen-4-ol (16.27%). Other compounds detected were -pinene (4.14%), -pinene (6.50%), -myrcene (8.09%), -terpineol (10.10%) and -terpinene (5.77%).


Author(s):  
Aysun Öztürk ◽  
Kubilay Kurtulus Bastas

In the present study, totally 49 samples, which showed the symptoms of leaf and shoot blight and cankers with brown discoloration of necrotic tissues on mature branches, were collected from 22 districts and areas of Konya Province between 2017 and 2019. Presence rate of E. amylovora in collected samples, showing symptoms of the disease, from the province was determined to be 40% for blackberry and raspberry and 33% rosehip for rosehip in three years. Bacteria consistently isolated from the diseased tissues were identified on the basis of biochemical, physiological, and molecular tests, comparing with a reference strain of E. amylovora, isolated from blackberry (Kbb 371). Twenty seven representative bacterial strains were gram-negative, rod-shaped, mucoid, fermentative, positive for levan formation and acetoin production, no growth at 36°C, positive for gelatin hydrolysis, and negative for esculin hydrolysis, indole, urease, catalase, oxidase, arginine dehydrolase, reduction of nitrate, acid production from lactose, and inositol. All strains induced a hypersensitive response in tobacco (Nicotiana tobacum cv. White Burley) 24 h after inoculation with a 108 CFU ml-1 bacterial suspension in sterile distilled water. The strains were identified as E. amylovora using the species-specific primers set A/B (1), which amplified a 1-kb DNA fragment in PCR, and the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method. In order to fulfill the Koch postulates, pathogenicity test was confirmed by injecting bacterial suspensions of 108 CFU ml-1 in sterile distilled water into the shoot tips of 3-year-old blackberry R. fruticosus cv. Chester, raspberry R. idaeus cv. Heritage and rosehip R. canina. All tests were repeated three times. The bacterium was re-isolated from inoculated plants and identified as E. amylovora. Phytosanitary measures are needed to prevent any further spread of the bacterium as potential inoculum sources to new blackberry, raspberry and rosehip growing areas.


Sign in / Sign up

Export Citation Format

Share Document