scholarly journals Optimisation of a Siamese Neural Network for Real-Time Energy Efficient Object Tracking

Author(s):  
Dominika Przewlocka ◽  
Mateusz Wasala ◽  
Hubert Szolc ◽  
Krzysztof Blachut ◽  
Tomasz Kryjak

In this paper the research on optimisation of visual object tracking using a Siamese neural network for embedded vision systems is presented. It was assumed that the solution shall operate in real-time, preferably for a high resolution video stream, with the lowest possible energy consumption. To meet these requirements, techniques such as the reduction of computational precision and pruning were considered. Brevitas, a tool dedicated for optimisation and quantisation of neural networks for FPGA implementation, was used. A number of training scenarios were tested with varying levels of optimisations-from integer uniform quantisation with 16 bits to ternary and binary networks. Next, the influence of these optimisations on the tracking performance was evaluated. It was possible to reduce the size of the convolutional filters up to 10 times in relation to the original network. The obtained results indicate that using quantisation can significantly reduce the memory and computational complexity of the proposed network while still enabling precise tracking, thus allow to use it in embedded vision systems. Moreover , quantisation of weights positively affects the network training by decreasing overfitting.

2020 ◽  
Author(s):  
Dominika Przewlocka ◽  
Mateusz Wasala ◽  
Hubert Szolc ◽  
Krzysztof Blachut ◽  
Tomasz Kryjak

In this paper the research on optimisation of visual object tracking using a Siamese neural network for embedded vision systems is presented. It was assumed that the solution shall operate in real-time, preferably for a high resolution video stream, with the lowest possible energy consumption. To meet these requirements, techniques such as the reduction of computational precision and pruning were considered. Brevitas, a tool dedicated for optimisation and quantisation of neural networks for FPGA implementation, was used. A number of training scenarios were tested with varying levels of optimisations-from integer uniform quantisation with 16 bits to ternary and binary networks. Next, the influence of these optimisations on the tracking performance was evaluated. It was possible to reduce the size of the convolutional filters up to 10 times in relation to the original network. The obtained results indicate that using quantisation can significantly reduce the memory and computational complexity of the proposed network while still enabling precise tracking, thus allow to use it in embedded vision systems. Moreover , quantisation of weights positively affects the network training by decreasing overfitting.


2021 ◽  
pp. 59-65
Author(s):  
Mykola Moroz ◽  
Denys Berestov ◽  
Oleg Kurchenko

The article analyzes the latest achievements and decisions in the process of visual support of the target object in the field of computer vision, considers approaches to the choice of algorithm for visual support of objects on video sequences, highlights the main visual features that can be based on tracking object. The criteria that influence the choice of the target object-tracking algorithm in real time are defined. However, for real-time tracking with limited computing resources, the choice of the appropriate algorithm is crucial. The choice of visual tracking algorithm is also influenced by the requirements and limitations for the monitored objects and prior knowledge or assumptions about them. As a result of the analysis, the Staple tracking algorithm was preferred, according to the criterion of speed, which is a crucial indicator in the design and development of software and hardware for automated visual support of the object in real-time video stream for various surveillance and security systems, monitoring traffic, activity recognition and other embedded systems.


2018 ◽  
Vol 77 (17) ◽  
pp. 22131-22143 ◽  
Author(s):  
Longchao Yang ◽  
Peilin Jiang ◽  
Fei Wang ◽  
Xuan Wang

Sign in / Sign up

Export Citation Format

Share Document