scholarly journals Conics from symmetric Pythagorean triple preserving matrices

2019 ◽  
Vol 12 (1) ◽  
pp. 85-92
Author(s):  
Mircea CRASMAREANU
Keyword(s):  
2011 ◽  
Vol 90 (3) ◽  
pp. 355-370
Author(s):  
TAKAFUMI MIYAZAKI

AbstractLet (a,b,c) be a primitive Pythagorean triple such that b is even. In 1956, Jeśmanowicz conjectured that the equation ax+by=cz has the unique solution (x,y,z)=(2,2,2) in the positive integers. This is one of the most famous unsolved problems on Pythagorean triples. In this paper we propose a similar problem (which we call the shuffle variant of Jeśmanowicz’ problem). Our problem states that the equation cx+by=az with x,y and z positive integers has the unique solution (x,y,z)=(1,1,2) if c=b+1 and has no solutions if c>b+1 . We prove that the shuffle variant of the Jeśmanowicz problem is true if c≡1 mod b.


2013 ◽  
Vol 89 (2) ◽  
pp. 316-321 ◽  
Author(s):  
MOU JIE DENG

AbstractLet $(a, b, c)$ be a primitive Pythagorean triple satisfying ${a}^{2} + {b}^{2} = {c}^{2} . $ In 1956, Jeśmanowicz conjectured that for any given positive integer $n$ the only solution of $\mathop{(an)}\nolimits ^{x} + \mathop{(bn)}\nolimits ^{y} = \mathop{(cn)}\nolimits ^{z} $ in positive integers is $x= y= z= 2. $ In this paper, for the primitive Pythagorean triple $(a, b, c)= (4{k}^{2} - 1, 4k, 4{k}^{2} + 1)$ with $k= {2}^{s} $ for some positive integer $s\geq 0$, we prove the conjecture when $n\gt 1$ and certain divisibility conditions are satisfied.


2020 ◽  
Vol 4 (2) ◽  
pp. 103
Author(s):  
Leomarich F Casinillo ◽  
Emily L Casinillo

A Pythagorean triple is a set of three positive integers a, b and c that satisfy the Diophantine equation a^2+b^2=c^2. The triple is said to be primitive if gcd(a, b, c)=1 and each pair of integers and  are relatively prime, otherwise known as non-primitive. In this paper, the generalized version of the formula that generates primitive and non-primitive Pythagorean triples that depends on two positive integers  k and n, that is, P_T=(a(k, n), b(k, n), c(k, n)) were constructed. Further, we determined the values of  k and n that generates primitive Pythagorean triples and give some important results.


2005 ◽  
Vol 98 (9) ◽  
pp. 580-581

In his letter to “Reader Reflections” (“Get More from Pythagorean Ideas,” Mathematics Teacher, September 2004, p. 68), Ken Sullins gives a way of generating a particular type of Pythagorean triple. While no proof is given, it is easy to see why his method works. I show how this leads to methods for generating other types of triples. Sullins extends his method to quartets and pentads. I show how other types of quartets can be generated. Finally, I show how Sullins's method can be extended to an arbitrary number of terms.


2021 ◽  
Vol 5 (1) ◽  
pp. 115-127
Author(s):  
Van Thien Nguyen ◽  
◽  
Viet Kh. Nguyen ◽  
Pham Hung Quy ◽  
◽  
...  

Let \((a, b, c)\) be a primitive Pythagorean triple parameterized as \(a=u^2-v^2, b=2uv, c=u^2+v^2\), where \(u>v>0\) are co-prime and not of the same parity. In 1956, L. Jesmanowicz conjectured that for any positive integer \(n\), the Diophantine equation \((an)^x+(bn)^y=(cn)^z\) has only the positive integer solution \((x,y,z)=(2,2,2)\). In this connection we call a positive integer solution \((x,y,z)\ne (2,2,2)\) with \(n>1\) exceptional. In 1999 M.-H. Le gave necessary conditions for the existence of exceptional solutions which were refined recently by H. Yang and R.-Q. Fu. In this paper we give a unified simple proof of the theorem of Le-Yang-Fu. Next we give necessary conditions for the existence of exceptional solutions in the case \(v=2,\ u\) is an odd prime. As an application we show the truth of the Jesmanowicz conjecture for all prime values \(u < 100\).


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Raymond Calvin Ochieng ◽  
Chiteng’a John Chikunji ◽  
Vitalis Onyango-Otieno

There exist a finite number of Pythagorean triples that have a common leg. In this paper we derive the formulas that generate pairs of primitive Pythagorean triples with common legs and also show the process of how to determine all the primitive and nonprimitive Pythagorean triples for a given leg of a Pythagorean triple.


2021 ◽  
Vol 20 ◽  
pp. 19-42
Author(s):  
Dr. Chetansing Rajput

This paper introduces the unique geometric features of 1:2:  right triangle, which is observed to be the quintessential form of Golden Ratio (φ). The 1:2:  triangle, with all its peculiar geometric attributes described herein, turns out to be the real ‘Golden Ratio Triangle’ in every sense of the term. This special right triangle also reveals the fundamental Pi:Phi (π:φ) correlation, in terms of precise geometric ratios, with an extreme level of precision. Further, this 1:2:  triangle is found to have a classical geometric relationship with 3-4-5 Pythagorean triple. The perfect complementary relationship between1:2:  triangle and 3-4-5 triangle not only unveils several new aspects of Golden Ratio, but it also imparts the most accurate π:φ correlation, which is firmly premised upon the classical geometric principles. Moreover, this paper introduces the concept of special right triangles; those provide the generalised geometric substantiation of all Metallic Means.


1998 ◽  
Vol 82 (495) ◽  
pp. 485
Author(s):  
Alastair MacDougall
Keyword(s):  

1987 ◽  
Vol 80 (2) ◽  
pp. 103-108
Author(s):  
Phyllis Lefton

This article describes a program that uses an interesting matrix method to generate Pythagorean triples -that is, solutions of the equation a2 + b2 = c2 for which a, b, and c are integers. Only primitive triples are found, that is, those for which a > 0, b > 0, c > 0, and the greatest common divisor of a, b, and c is one. This result suffices because nonprimitive triples are just multiples of primitive ones. We shall use the abbreviation PPT for primitive Pythagorean triple.


2016 ◽  
Vol 95 (1) ◽  
pp. 5-13 ◽  
Author(s):  
MOU-JIE DENG ◽  
DONG-MING HUANG

Let $a,b,c$ be a primitive Pythagorean triple and set $a=m^{2}-n^{2},b=2mn,c=m^{2}+n^{2}$, where $m$ and $n$ are positive integers with $m>n$, $\text{gcd}(m,n)=1$ and $m\not \equiv n~(\text{mod}~2)$. In 1956, Jeśmanowicz conjectured that the only positive integer solution to the Diophantine equation $(m^{2}-n^{2})^{x}+(2mn)^{y}=(m^{2}+n^{2})^{z}$ is $(x,y,z)=(2,2,2)$. We use biquadratic character theory to investigate the case with $(m,n)\equiv (2,3)~(\text{mod}~4)$. We show that Jeśmanowicz’ conjecture is true in this case if $m+n\not \equiv 1~(\text{mod}~16)$ or $y>1$. Finally, using these results together with Laurent’s refinement of Baker’s theorem, we show that Jeśmanowicz’ conjecture is true if $(m,n)\equiv (2,3)~(\text{mod}~4)$ and $n<100$.


Sign in / Sign up

Export Citation Format

Share Document