geometric features
Recently Published Documents





Cobot ◽  
2022 ◽  
Vol 1 ◽  
pp. 2
Hao Peng ◽  
Guofeng Tong ◽  
Zheng Li ◽  
Yaqi Wang ◽  
Yuyuan Shao

Background: 3D object detection based on point clouds in road scenes has attracted much attention recently. The voxel-based methods voxelize the scene to regular grids, which can be processed with the advanced feature learning frameworks based on convolutional layers for semantic feature learning. The point-based methods can extract the geometric feature of the point due to the coordinate reservations. The combination of the two is effective for 3D object detection. However, the current methods use a voxel-based detection head with anchors for classification and localization. Although the preset anchors cover the entire scene, it is not suitable for detection tasks with larger scenes and multiple categories of objects, due to the limitation of the voxel size. Additionally, the misalignment between the predicted confidence and proposals in the Regions of the Interest (ROI) selection bring obstacles to 3D object detection. Methods: We investigate the combination of voxel-based methods and point-based methods for 3D object detection. Additionally, a voxel-to-point module that captures semantic and geometric features is proposed in the paper. The voxel-to-point module is conducive to the detection of small-size objects and avoids the presets of anchors in the inference stage. Moreover, a confidence adjustment module with the center-boundary-aware confidence attention is proposed to solve the misalignment between the predicted confidence and proposals in the regions of the interest selection. Results: The proposed method has achieved state-of-the-art results for 3D object detection in the  Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) object detection dataset. Actually, as of September 19, 2021, our method ranked 1st in the 3D and Bird Eyes View (BEV) detection of cyclists tagged with difficulty level ‘easy’, and ranked 2nd in the 3D detection of cyclists tagged with ‘moderate’. Conclusions: We propose an end-to-end two-stage 3D object detector with voxel-to-point module and confidence adjustment module.

Harmandeep Singh ◽  
Vipul Sharma ◽  
Damanpreet Singh

AbstractThis paper introduces a comparative analysis of the proficiencies of various textures and geometric features in the diagnosis of breast masses on mammograms. An improved machine learning-based framework was developed for this study. The proposed system was tested using 106 full field digital mammography images from the INbreast dataset, containing a total of 115 breast mass lesions. The proficiencies of individual and various combinations of computed textures and geometric features were investigated by evaluating their contributions towards attaining higher classification accuracies. Four state-of-the-art filter-based feature selection algorithms (Relief-F, Pearson correlation coefficient, neighborhood component analysis, and term variance) were employed to select the top 20 most discriminative features. The Relief-F algorithm outperformed other feature selection algorithms in terms of classification results by reporting 85.2% accuracy, 82.0% sensitivity, and 88.0% specificity. A set of nine most discriminative features were then selected, out of the earlier mentioned 20 features obtained using Relief-F, as a result of further simulations. The classification performances of six state-of-the-art machine learning classifiers, namely k-nearest neighbor (k-NN), support vector machine, decision tree, Naive Bayes, random forest, and ensemble tree, were investigated, and the obtained results revealed that the best classification results (accuracy = 90.4%, sensitivity = 92.0%, specificity = 88.0%) were obtained for the k-NN classifier with the number of neighbors having k = 5 and squared inverse distance weight. The key findings include the identification of the nine most discriminative features, that is, FD26 (Fourier Descriptor), Euler number, solidity, mean, FD14, FD13, periodicity, skewness, and contrast out of a pool of 125 texture and geometric features. The proposed results revealed that the selected nine features can be used for the classification of breast masses in mammograms.

2022 ◽  
Yu Xiang ◽  
Liwei Hu ◽  
Jun Zhang ◽  
Wenyong Wang

Abstract The perception of geometric-features of airfoils is the basis in aerodynamic area for performance prediction, parameterization, aircraft inverse design, etc. There are three approaches to percept the geometric shape of airfoils, namely manual design of airfoil geometry parameters, polynomial definition and deep learning. The first two methods directly define geometric-features or polynomials of airfoil curves, but the number of extracted features is limited. Deep learning algorithms can extract a large number of potential features (called latent features). However, the features extracted by deep learning lack explicit geometrical meaning. Motivated by the advantages of polynomial definition and deep learning, we propose a geometric-feature extraction method (named Bézier-based feature extraction, BFE) for airfoils, which consists of two parts: manifold metric feature extraction and geometric-feature fusion encoder (GF encoder). Manifold metric feature extraction, with the help of the Bézier curve, captures manifold metrics (a sort of geometric-features) from tangent space of airfoil curves, and the GF-encoder combines airfoil coordinate data and manifold metrics together to form novel fused geometric-features. To validate the feasibility of the fused geometric-features, two experiments based on the public UIUC airfoil dataset are conducted. Experiment I is used to extract manifold metrics of airfoils and export the fused geometric-features. Experiment II, based on the Multi-task learning (MTL), is used to fuse the discrepant data (i.e., the fused geometric-features and the flight conditions) to predict the aerodynamic performance of airfoils. The results show that the BFE can generate more smooth and realistic airfoils than Auto-Encoder, and the fused geometric-features extracted by BFE can be used to reduce the prediction errors of C L and C D .

2021 ◽  
Vol 221 (2) ◽  
Rachel M. Brunetti ◽  
Gabriele Kockelkoren ◽  
Preethi Raghavan ◽  
George R.R. Bell ◽  
Derek Britain ◽  

To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP’s front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.

Archaeometry ◽  
2021 ◽  
Francisco Javier Esquivel ◽  
Carolina Cabrero ◽  
Juan Antonio Cámara ◽  
José Antonio Esquivel

2021 ◽  
Vol 11 (24) ◽  
pp. 12086
Elena D’Amato ◽  
Constantino Carlos Reyes-Aldasoro ◽  
Arianna Consiglio ◽  
Gabriele D’Amato ◽  
Maria Felicia Faienza ◽  

This work describes a non-invasive, automated software framework to discriminate between individuals with a genetic disorder, Pitt–Hopkins syndrome (PTHS), and healthy individuals through the identification of morphological facial features. The input data consist of frontal facial photographs in which faces are located using histograms of oriented gradients feature descriptors. Pre-processing steps include color normalization and enhancement, scaling down, rotation, and cropping of pictures to produce a series of images of faces with consistent dimensions. Sixty-eight facial landmarks are automatically located on each face through a cascade of regression functions learnt via gradient boosting to estimate the shape from an initial approximation. The intensities of a sparse set of pixels indexed relative to this initial estimate are used to determine the landmarks. A set of carefully selected geometric features, for example, the relative width of the mouth or angle of the nose, is extracted from the landmarks. The features are used to investigate the statistical differences between the two populations of PTHS and healthy controls. The methodology was tested on 71 individuals with PTHS and 55 healthy controls. The software was able to classify individuals with an accuracy rate of 91%, while pediatricians achieved a recognition rate of 74%. Two geometric features related to the nose and mouth showed significant statistical difference between the two populations.

Sign in / Sign up

Export Citation Format

Share Document