Thermal Energy Storage Through Melting of a Commercial Phase Change Material in an Annulus with Radially Divergent Longitudinal Fins

Author(s):  
Tonny Tabassum Mainul Hasan ◽  
Latifa Begum

This study reports on the unsteady two-dimensional numerical investigations of melting of a paraffin wax (phase change material, PCM) which melts over a temperature range of 8.7oC. The PCM is placed inside a circular concentric horizontal-finned annulus for the storage of thermal energy. The inner tube is fitted with three radially diverging longitudinal fins strategically placed near the bottom part of the annulus to accelerate the melting process there. The developed CFD code used in Tabassum et al., 2018 is extended to incorporate the presence of fins. The numerical results show that the average Nusselt number over the inner tube surface, the total melt fraction, the total stored energy all increased at every time instant in the finned annulus compared to the annulus without fins. This is due to the fact that in the finned annulus, the fins at the lower part of the annulus promotes buoyancy-driven convection as opposed to the slow conduction melting that prevails at the bottom part of the plain annulus. Fins with two different heights have been considered. It is found that by extending the height of the fin to 50% of the annular gap about 33.05% more energy could be stored compared to the bare annulus at the melting time of 82.37 min for the identical operating conditions. The effects of fins with different heights on the temperature and streamfunction distributions are found to be different. The present study can provide some useful guidelines for achieving a better thermal energy storage system.

Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 76 ◽  
Author(s):  
Bernardo Buonomo ◽  
Anna di Pasqua ◽  
Davide Ercole ◽  
Oronzio Manca

Thermal storage system (TES) with phase change material (PCM) is an important device to store thermal energy. It works as a thermal buffer to reconcile the supply energy with the energy demand. It has a wide application field, especially for solar thermal energy storage. The main drawback is the low value of thermal conductivity of the PCM making the system useless for thermal engineering applications. A way to resolve this problem is to combine the PCM with a highly conductive material like metal foam and/or nanoparticles. In this paper a numerical investigation on the metal foam effects in a latent heat thermal energy storage system, based on a phase change material with nanoparticles (nano-PCM), is accomplished. The modelled TES is a typical 70 L water tank filled with nano-PCM with pipes to transfer thermal energy from a fluid to the nano-PCM. The PCM is a pure paraffin wax and the nanoparticles are in aluminum oxide. The metal foam is made of aluminum with assigned values of porosity. The enthalpy-porosity theory is employed to simulate the phase change of the nano-PCM and the metal foam is modelled as a porous media. Numerical simulations are carried out using the Ansys Fluent code. The results are shown in terms of melting time, temperature at varying of time, and total amount of stored energy.


2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2517-2524 ◽  
Author(s):  
Selvam Lokesh ◽  
Pachappan Murugan ◽  
Anbalagan Sathishkumar ◽  
Vellaisamy Kumaresan ◽  
Ramalingam Velraj

The present work aimed to investigate the melting and solidification characteristics of nanoparticle enhanced phase change material (NEPCM). The NEPCM were prepared using paraffin as the phase change material and multiwall carbon nanotube (MWCNT) as the nanomaterial without using any dispersant. Thermal conductivity of the NEPCM was measured with respect to temperature and the measured data showed higher enhancement than the phase change material both in liquid and solid state, due to inherent high conductive and the continuous networking of the MWCNT. A reduction in solidification and melting time of 42% and 29% was achieved in the case of NEPCM with 0.9% and 0.3%, respectively. It is concluded that enhanced heat transfer characteristics of NEPCM is highly beneficial towards design and development of efficient thermal energy storage system for various applications.


2020 ◽  
Vol 197 ◽  
pp. 08001
Author(s):  
Bernardo Buonomo ◽  
Lucia Capasso ◽  
Oronzio Manca ◽  
Ferdinando Menale ◽  
Sergio Nardini

In this paper, a two-dimensional numerical investigation on a prototypal solar chimney system integrated with an absorbing capacity wall in a south facade of a building is presented. The capacity wall is composed of a high absorbing plate and an assigned thickness of phase change material in metal foam. The chimney consists of a converging channel with one vertical absorbing wall and the glass plate inclined of 2°. The channel height inside the chimney is equal to 4.0 m, whereas the channel gap is at the inlet equal to 0.34 m and at the outlet it is 0.20 m. The thermal energy storage system is 4.0 m high. The numerical analysis was intended to evaluate the thermal and fluid dynamic behaviors of the solar chimney integrated with a latent thermal energy storage system. The investigation has shown that in all cases PCM has not fully melted during the day and the presence of aluminum foam inside the box attenuates the variation of temperatures during the day. The results show that the three different thickness of the thermal storage system present very similar fluid dynamic and thermal behaviors. For the analyzed configurations, the phase change material does not reach a total melting during the considered day.


Sign in / Sign up

Export Citation Format

Share Document