Study of two-phase flow pressure drop characteristics in Proton Exchange Membrane (PEM) fuel cell flow channels of different geometries

2016 ◽  
Author(s):  
Ekramul Haque Ehite
2011 ◽  
Vol 196 (19) ◽  
pp. 8031-8040 ◽  
Author(s):  
Ryan Anderson ◽  
David P. Wilkinson ◽  
Xiaotao Bi ◽  
L. Zhang

Author(s):  
Mehdi Mortazavi ◽  
Kazuya Tajiri

Proton exchange membrane (PEM) fuel cells produce power with water and heat as inevitable byproducts. Accumulated liquid water within gas channel blocks the reactant flow and cause pressure drop along the gas channel. It is of extreme importance to accurately predict the liquid and gas two-phase flow pressure drop in PEM fuel cell flow channels. This pressure drop can be considered as an in-situ diagnostic tool that reveals information about the amount of liquid water accumulated within the flow channels. In this paper, the two-phase flow pressure drops are measured in ex-situ PEM fuel cell parallel flow channels. The pressure drops were measured for air mass fluxes of 2.4–6.3kg/m2s and water mass fluxes of 0.0071–1.28kg/m2s. These mass fluxes correspond to 2–5.33m/s and 7.14 × 10−6 – 0.0012m/s air and water superficial velocities, respectively. The measured two-phase flow pressure drops are then compared with different two-phase flow pressure drop models. Qualitative and quantitative comparison between the experimental results and existing models is provided in this work.


Author(s):  
Ryan Anderson ◽  
Lifeng Zhang ◽  
David P. Wilkinson

Proton exchange membrane fuel cells (PEMFCs) are considered one of the most promising alternatives for the automotive industry owing to their high energy efficiency, zero emission at the vehicle use stage, and low temperature operation. Water as a byproduct plays a complex role in fuel cell operation. In particular, the inevitable occurrence of liquid water leads to gas-liquid two-phase flows in various components of PEMFCs including flow channels of which diameters range from micrometers to millimeters. In conventional minichannels and microchannels, the Lockhart-Martinelli (LM) approach has been employed to predict the two-phase pressure drop of gas-liquid systems. This approach has previously been updated by our group to more accurately reflect the introduction of liquid water into the flow channels of a PEMFC i.e. from a porous media perpendicular to the gas flow. Importantly, the LM method normalizes the data independent of the flow field design and operating conditions like temperature, pressure, and relative humidity. This paper analyzes the increasing amount of experimental data on two-phase flow pressure drops/two-phase flow multipliers in the literature with these approaches. The focus is the cathode side (therefore an air/water system), and data is collected from multiple research groups using active fuel cells (electrochemically produced water). The traditional LM approach greatly under-predicts the two-phase pressure drop at low current densities. However, the analysis is applied over a range of current densities, and it better predicts results at higher current densities (>600 mA cm−2). Literature correlations for the Chisholm parameter C, a flow regime dependent parameter in the LM equation, have been proposed for non-active (external water injection) fuel cells but do not match the results from operating fuel cells. C is shown here to vary with current density, flow stoichiometry (gas velocity), gas diffusion layer, and slightly with relative humidity.


Sign in / Sign up

Export Citation Format

Share Document