scholarly journals An Eigenvalue Characterization of Antipodal Distance-Regular Graphs

10.37236/1315 ◽  
1997 ◽  
Vol 4 (1) ◽  
Author(s):  
M. A. Fiol

Let $G$ be a regular (connected) graph with $n$ vertices and $d+1$ distinct eigenvalues. As a main result, it is shown that $G$ is an $r$-antipodal distance-regular graph if and only if the distance graph $G_d$ is constituted by disjoint copies of the complete graph $K_r$, with $r$ satisfying an expression in terms of $n$ and the distinct eigenvalues.

2019 ◽  
Vol 12 (07) ◽  
pp. 2050009
Author(s):  
Siwaporn Mamart ◽  
Chalermpong Worawannotai

Merging the first and third classes in a connected graph is the operation of adding edges between all vertices at distance 3 in the original graph while keeping the original edges. We determine when merging the first and third classes in a bipartite distance-regular graph produces a distance-regular graph.


10.37236/1372 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
T. D. Bending ◽  
D. Fon-Der-Flaass

Let $V$ and $W$ be $n$-dimensional vector spaces over $GF(2)$. A mapping $Q:V\rightarrow W$ is called crooked if it satisfies the following three properties: $Q(0)=0$; $Q(x)+Q(y)+Q(z)+Q(x+y+z)\neq 0$ for any three distinct $x,y,z$; $Q(x)+Q(y)+Q(z)+Q(x+a)+Q(y+a)+Q(z+a)\neq 0$ if $a\neq 0$ ($x,y,z$ arbitrary). We show that every crooked function gives rise to a distance regular graph of diameter 3 having $\lambda=0$ and $\mu=2$ which is a cover of the complete graph. Our approach is a generalization of a recent construction found by de Caen, Mathon, and Moorhouse. We study graph-theoretical properties of the resulting graphs, including their automorphisms. Also we demonstrate a connection between crooked functions and bent functions.


2001 ◽  
Vol 10 (2) ◽  
pp. 127-135 ◽  
Author(s):  
M. A. FIOL

A graph Γ with diameter d is strongly distance-regular if Γ is distance-regular and its distance-d graph Γd is strongly regular. Some known examples of such graphs are the connected strongly regular graphs, with distance-d graph Γd = Γ (the complement of Γ), and the antipodal distance-regular graphs. Here we study some spectral conditions for a (regular or distance-regular) graph to be strongly distance-regular. In particular, for the case d = 3 the following characterization is proved. A regular (connected) graph Γ, with distinct eigenvalues λ0 > λ1 > λ2 > λ3, is strongly distance-regular if and only if λ2 = −1, and Γ3 is k-regular with degree k satisfying an expression which depends only on the order and the different eigenvalues of Γ.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Ying Ying Tan ◽  
Xiaoye Liang ◽  
Jack Koolen

In the survey paper by Van Dam, Koolen and Tanaka (2016), they asked to classify the thin $Q$-polynomial distance-regular graphs. In this paper, we show that a thin distance-regular graph with the same intersection numbers as a Grassmann graph $J_q(n, D)~ (n \geqslant 2D)$ is the Grassmann graph if $D$ is large enough.


10.37236/2289 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Edwin R. Van Dam ◽  
Miquel Angel Fiol

Recently, it has been shown that a connected graph $\Gamma$ with $d+1$ distinct eigenvalues and odd-girth $2d+1$ is distance-regular. The proof of this result was based on the spectral excess theorem. In this note we present an alternative and more direct proof which does not rely on the spectral excess theorem, but on a known characterization of distance regular graphs in terms of the predistance polynomial of degree $d$.


10.37236/7347 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Štefko Miklavič

Let $\Gamma$ denote a bipartite distance-regular graph with diameter $D$. In [Caughman (2004)], Caughman showed that if $D \ge 12$, then $\Gamma$ is $Q$-polynomial if and only if one of the following (i)-(iv) holds: (i) $\Gamma$ is the ordinary $2D$-cycle, (ii) $\Gamma$ is the Hamming cube $H(D,2)$, (iii) $\Gamma$ is the antipodal quotient of the Hamming cube $H(2D,2)$, (iv) the intersection numbers of $\Gamma$ satisfy $c_i = (q^i - 1)/(q-1)$, $b_i = (q^D-q^i)/(q-1)$ $(0 \le i \le D)$, where $q$ is an integer at least $2$. In this paper we show that the above result is true also for bipartite distance-regular graphs with $D \in \{9,10,11\}$.


10.37236/7763 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Janoš Vidali

A package for the Sage computer algebra system is developed for checking feasibility of a given intersection array for a distance-regular graph. We use this tool to show that there is no distance-regular graph with intersection array$$\{(2r+1)(4r+1)(4t-1), 8r(4rt-r+2t), (r+t)(4r+1); 1, (r+t)(4r+1), 4r(2r+1)(4t-1)\}  (r, t \geq 1),$$$\{135,\! 128,\! 16; 1,\! 16,\! 120\}$, $\{234,\! 165,\! 12; 1,\! 30,\! 198\}$ or $\{55,\! 54,\! 50,\! 35,\! 10; 1,\! 5,\! 20,\! 45,\! 55\}$. In all cases, the proofs rely on equality in the Krein condition, from which triple intersection numbers are determined. Further combinatorial arguments are then used to derive nonexistence. 


10.37236/4556 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Stefko Miklavic ◽  
Safet Penjic

Let $\Gamma$ denote a bipartite $Q$-polynomial distance-regular graph with diameter $D \ge 4$, valency $k \ge 3$ and intersection number $c_2 \le 2$. We show that $\Gamma$ is either the $D$-dimensional hypercube, or the antipodal quotient of the $2D$-dimensional hypercube, or $D=5$.


10.37236/2410 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Jack H. Koolen ◽  
Joohyung Kim ◽  
Jongyook Park

Godsil showed that if $\Gamma$ is a distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$, and $\theta$ is an eigenvalue of $\Gamma$ with multiplicity $m \geq 2$, then $k \leq\frac{(m+2)(m-1)}{2}$.In this paper we will give a refined statement of this result. We show that if $\Gamma$ is a distance-regular graph with diameter $D \geq 3$, valency $k \geq 2$ and an eigenvalue $\theta$ with multiplicity $m\geq 2$, such that $k$ is close to $\frac{(m+2)(m-1)}{2}$, then $\theta$ must be a tail. We also characterize the distance-regular graphs with diameter $D \geq 3$, valency $k \geq 3$ and an eigenvalue $\theta$ with multiplicity $m \geq 2$ satisfying $k= \frac{(m+2)(m-1)}{2}$.


2020 ◽  
Vol 6 (2) ◽  
pp. 63
Author(s):  
Konstantin S. Efimov ◽  
Alexander A. Makhnev

In the class of distance-regular graphs of diameter 3 there are 5 intersection arrays of graphs with at most 28 vertices and noninteger eigenvalue. These arrays are \(\{18,14,5;1,2,14\}\), \(\{18,15,9;1,1,10\}\), \(\{21,16,10;1,2,12\}\), \(\{24,21,3;1,3,18\}\), and \(\{27,20,7;1,4,21\}\). Automorphisms of graphs with intersection arrays \(\{18,15,9;1,1,10\}\) and \(\{24,21,3;1,3,18\}\) were found earlier by A.A. Makhnev and D.V. Paduchikh. In this paper, it is proved that a graph with the intersection array \(\{27,20,7;1,4,21\}\) does not exist.


Sign in / Sign up

Export Citation Format

Share Document