Some Spectral Characterizations of Strongly Distance-Regular Graphs

2001 ◽  
Vol 10 (2) ◽  
pp. 127-135 ◽  
Author(s):  
M. A. FIOL

A graph Γ with diameter d is strongly distance-regular if Γ is distance-regular and its distance-d graph Γd is strongly regular. Some known examples of such graphs are the connected strongly regular graphs, with distance-d graph Γd = Γ (the complement of Γ), and the antipodal distance-regular graphs. Here we study some spectral conditions for a (regular or distance-regular) graph to be strongly distance-regular. In particular, for the case d = 3 the following characterization is proved. A regular (connected) graph Γ, with distinct eigenvalues λ0 > λ1 > λ2 > λ3, is strongly distance-regular if and only if λ2 = −1, and Γ3 is k-regular with degree k satisfying an expression which depends only on the order and the different eigenvalues of Γ.

2019 ◽  
Vol 12 (07) ◽  
pp. 2050009
Author(s):  
Siwaporn Mamart ◽  
Chalermpong Worawannotai

Merging the first and third classes in a connected graph is the operation of adding edges between all vertices at distance 3 in the original graph while keeping the original edges. We determine when merging the first and third classes in a bipartite distance-regular graph produces a distance-regular graph.


10.37236/1315 ◽  
1997 ◽  
Vol 4 (1) ◽  
Author(s):  
M. A. Fiol

Let $G$ be a regular (connected) graph with $n$ vertices and $d+1$ distinct eigenvalues. As a main result, it is shown that $G$ is an $r$-antipodal distance-regular graph if and only if the distance graph $G_d$ is constituted by disjoint copies of the complete graph $K_r$, with $r$ satisfying an expression in terms of $n$ and the distinct eigenvalues.


10.37236/5295 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Jiang Zhou ◽  
Zhongyu Wang ◽  
Changjiang Bu

Let $G$ be a connected graph of order $n$. The resistance matrix of $G$ is defined as $R_G=(r_{ij}(G))_{n\times n}$, where $r_{ij}(G)$ is the resistance distance between two vertices $i$ and $j$ in $G$. Eigenvalues of $R_G$ are called R-eigenvalues of $G$. If all row sums of $R_G$ are equal, then $G$ is called resistance-regular. For any connected graph $G$, we show that $R_G$ determines the structure of $G$ up to isomorphism. Moreover, the structure of $G$ or the number of spanning trees of $G$ is determined by partial entries of $R_G$ under certain conditions. We give some characterizations of resistance-regular graphs and graphs with few distinct R-eigenvalues. For a connected regular graph $G$ with diameter at least $2$, we show that $G$ is strongly regular if and only if there exist $c_1,c_2$ such that $r_{ij}(G)=c_1$ for any adjacent vertices $i,j\in V(G)$, and $r_{ij}(G)=c_2$ for any non-adjacent vertices $i,j\in V(G)$.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Ying Ying Tan ◽  
Xiaoye Liang ◽  
Jack Koolen

In the survey paper by Van Dam, Koolen and Tanaka (2016), they asked to classify the thin $Q$-polynomial distance-regular graphs. In this paper, we show that a thin distance-regular graph with the same intersection numbers as a Grassmann graph $J_q(n, D)~ (n \geqslant 2D)$ is the Grassmann graph if $D$ is large enough.


2021 ◽  
Vol 109 (123) ◽  
pp. 35-60
Author(s):  
Mirko Lepovic

We say that a regular graph G of order n and degree r ? 1 (which is not the complete graph) is strongly regular if there exist non-negative integers ? and ? such that |Si ? Sj | = ? for any two adjacent vertices i and j, and |Si ? Sj | = ? for any two distinct non-adjacent vertices i and j, where Sk denotes the neighborhood of the vertex k. Let ?1 = r, ?2 and ?3 be the distinct eigenvalues of a connected strongly regular graph. Let m1 = 1, m2 and m3 denote the multiplicity of r, ?2 and ?3, respectively. We here describe the parameters n, r, ? and ? for strongly regular graphs with m2 = qm3 and m3 = qm2 for q = 3/2, 4/3, 5/2, 5/3, 5/4, 6/5.


10.37236/7347 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Štefko Miklavič

Let $\Gamma$ denote a bipartite distance-regular graph with diameter $D$. In [Caughman (2004)], Caughman showed that if $D \ge 12$, then $\Gamma$ is $Q$-polynomial if and only if one of the following (i)-(iv) holds: (i) $\Gamma$ is the ordinary $2D$-cycle, (ii) $\Gamma$ is the Hamming cube $H(D,2)$, (iii) $\Gamma$ is the antipodal quotient of the Hamming cube $H(2D,2)$, (iv) the intersection numbers of $\Gamma$ satisfy $c_i = (q^i - 1)/(q-1)$, $b_i = (q^D-q^i)/(q-1)$ $(0 \le i \le D)$, where $q$ is an integer at least $2$. In this paper we show that the above result is true also for bipartite distance-regular graphs with $D \in \{9,10,11\}$.


10.37236/4745 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Chris Godsil ◽  
Natalie Mullin ◽  
Aidan Roy

We consider continuous-time quantum walks on distance-regular graphs. Using results about the existence of complex Hadamard matrices in association schemes, we determine which of these graphs have quantum walks that admit uniform mixing.First we apply a result due to Chan to show that the only strongly regular graphs that admit instantaneous uniform mixing are the Paley graph of order nine and certain graphs corresponding to regular symmetric Hadamard matrices with constant diagonal. Next we prove that if uniform mixing occurs on a bipartite graph $X$ with $n$ vertices, then $n$ is divisible by four. We also prove that if $X$ is bipartite and regular, then $n$ is the sum of two integer squares. Our work on bipartite graphs implies that uniform mixing does not occur on $C_{2m}$ for $m \geq 3$. Using a result of Haagerup, we show that uniform mixing does not occur on $C_p$ for any prime $p$ such that $p \geq 5$. In contrast to this result, we see that $\epsilon$-uniform mixing occurs on $C_p$ for all primes $p$.


10.37236/7763 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Janoš Vidali

A package for the Sage computer algebra system is developed for checking feasibility of a given intersection array for a distance-regular graph. We use this tool to show that there is no distance-regular graph with intersection array$$\{(2r+1)(4r+1)(4t-1), 8r(4rt-r+2t), (r+t)(4r+1); 1, (r+t)(4r+1), 4r(2r+1)(4t-1)\}  (r, t \geq 1),$$$\{135,\! 128,\! 16; 1,\! 16,\! 120\}$, $\{234,\! 165,\! 12; 1,\! 30,\! 198\}$ or $\{55,\! 54,\! 50,\! 35,\! 10; 1,\! 5,\! 20,\! 45,\! 55\}$. In all cases, the proofs rely on equality in the Krein condition, from which triple intersection numbers are determined. Further combinatorial arguments are then used to derive nonexistence. 


Sign in / Sign up

Export Citation Format

Share Document