scholarly journals A New Upper Bound on the Game Chromatic Index of Graphs

10.37236/7451 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Ralph Keusch

We study the two-player game where Maker and Breaker alternately color the edges of a given graph $G$ with $k$ colors such that adjacent edges never get the same color. Maker's goal is to play such that at the end of the game, all edges are colored. Vice-versa, Breaker wins as soon as there is an uncolored edge where every color is blocked. The game chromatic index $\chi'_g(G)$ denotes the smallest $k$ for which Maker has a winning strategy.The trivial bounds $\Delta(G) \le \chi_g'(G) \le 2\Delta(G)-1$ hold for every graph $G$, where $\Delta(G)$ is the maximum degree of $G$. Beveridge, Bohman, Frieze, and Pikhurko conjectured that there exists a constant $c>0$ such that for any graph $G$ it holds $\chi'_g(G) \le (2-c)\Delta(G)$ [Theoretical Computer Science 2008], and verified the statement for all $\delta>0$ and all graphs with $\Delta(G) \ge (\frac12+\delta)|V(G)|$. In this paper, we show that $\chi'_g(G) \le (2-c)\Delta(G)$ is true for all graphs $G$ with $\Delta(G) \ge C \log |V(G)|$. In addition, we consider a biased version of the game where Breaker is allowed to color $b$ edges per turn and give bounds on the number of colors needed for Maker to win this biased game.




Author(s):  
Mareike Dressler ◽  
Adam Kurpisz ◽  
Timo de Wolff

AbstractVarious key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems is based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS-based certificates remain valid: First, for polynomials, which are nonnegative over the n-variate boolean hypercube with constraints of degree d there exists a SONC certificate of degree at most $$n+d$$ n + d . Second, if there exists a degree d SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree d SONC certificate that includes at most $$n^{O(d)}$$ n O ( d ) nonnegative circuit polynomials. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under taking affine transformation of variables and that for SONC there does not exist an equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both the algebraic and the optimization perspective.





2018 ◽  
Vol 27 (4) ◽  
pp. 441-441
Author(s):  
PAUL BALISTER ◽  
BÉLA BOLLOBÁS ◽  
IMRE LEADER ◽  
ROB MORRIS ◽  
OLIVER RIORDAN

This special issue is devoted to papers from the meeting on Combinatorics and Probability, held at the Mathematisches Forschungsinstitut in Oberwolfach from the 17th to the 23rd April 2016. The lectures at this meeting focused on the common themes of Combinatorics and Discrete Probability, with many of the problems studied originating in Theoretical Computer Science. The lectures, many of which were given by young participants, stimulated fruitful discussions. The fact that the participants work in different and yet related topics, and the open problems session held during the meeting, encouraged interesting discussions and collaborations.



Sign in / Sign up

Export Citation Format

Share Document