scholarly journals Structure and Colour in Triangle-Free Graphs

10.37236/9267 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
N. R. Aravind ◽  
Stijn Cambie ◽  
Wouter Cames van Batenburg ◽  
Rémi De Joannis de Verclos ◽  
Ross J. Kang ◽  
...  

Motivated by a recent conjecture of the first author, we prove that every properly coloured triangle-free graph of chromatic number $\chi$ contains a rainbow independent set of size $\lceil\frac12\chi\rceil$. This is sharp up to a factor $2$. This result and its short proof have implications for the related notion of chromatic discrepancy. Drawing inspiration from both structural and extremal graph theory, we conjecture that every triangle-free graph of chromatic number $\chi$ contains an induced cycle of length $\Omega(\chi\log\chi)$ as $\chi\to\infty$. Even if one only demands an induced path of length $\Omega(\chi\log\chi)$, the conclusion would be sharp up to a constant multiple. We prove it for regular girth $5$ graphs and for girth $21$ graphs. As a common strengthening of the induced paths form of this conjecture and of Johansson's theorem (1996), we posit the existence of some $c >0$ such that for every forest $H$ on $D$ vertices, every triangle-free and induced $H$-free graph has chromatic number at most $c D/\log D$. We prove this assertion with 'triangle-free' replaced by 'regular girth 5'.

10.37236/328 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
János Barát ◽  
Miloš Stojaković

We analyze the duration of the unbiased Avoider-Enforcer game for three basic positional games. All the games are played on the edges of the complete graph on $n$ vertices, and Avoider's goal is to keep his graph outerplanar, diamond-free and $k$-degenerate, respectively. It is clear that all three games are Enforcer's wins, and our main interest lies in determining the largest number of moves Avoider can play before losing. Extremal graph theory offers a general upper bound for the number of Avoider's moves. As it turns out, for all three games we manage to obtain a lower bound that is just an additive constant away from that upper bound. In particular, we exhibit a strategy for Avoider to keep his graph outerplanar for at least $2n-8$ moves, being just $6$ short of the maximum possible. A diamond-free graph can have at most $d(n)=\lceil\frac{3n-4}{2}\rceil$ edges, and we prove that Avoider can play for at least $d(n)-3$ moves. Finally, if $k$ is small compared to $n$, we show that Avoider can keep his graph $k$-degenerate for as many as $e(n)$ moves, where $e(n)$ is the maximum number of edges a $k$-degenerate graph can have.


2017 ◽  
Vol 61 ◽  
pp. 541-547
Author(s):  
Andrzej Grzesik ◽  
Daniel Král' ◽  
László Miklós Lovász

2020 ◽  
pp. 33-56
Author(s):  
Fan Chung ◽  
Ron Graham

Sign in / Sign up

Export Citation Format

Share Document