extremal graph theory
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Arturo Tozzi

When an edge is removed, a cycle graph Cn becomes a n-1 tree graph. This observation from extremal set theory leads us to the realm of set theory, in which a topological manifold of genus-1 turns out to be of genus-0. Starting from these premises, we prove a theorem suggesting that a manifold with disjoint points must be of genus-0, while a manifold of genus-1 cannot encompass disjoint points.


10.37236/9267 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
N. R. Aravind ◽  
Stijn Cambie ◽  
Wouter Cames van Batenburg ◽  
Rémi De Joannis de Verclos ◽  
Ross J. Kang ◽  
...  

Motivated by a recent conjecture of the first author, we prove that every properly coloured triangle-free graph of chromatic number $\chi$ contains a rainbow independent set of size $\lceil\frac12\chi\rceil$. This is sharp up to a factor $2$. This result and its short proof have implications for the related notion of chromatic discrepancy. Drawing inspiration from both structural and extremal graph theory, we conjecture that every triangle-free graph of chromatic number $\chi$ contains an induced cycle of length $\Omega(\chi\log\chi)$ as $\chi\to\infty$. Even if one only demands an induced path of length $\Omega(\chi\log\chi)$, the conclusion would be sharp up to a constant multiple. We prove it for regular girth $5$ graphs and for girth $21$ graphs. As a common strengthening of the induced paths form of this conjecture and of Johansson's theorem (1996), we posit the existence of some $c >0$ such that for every forest $H$ on $D$ vertices, every triangle-free and induced $H$-free graph has chromatic number at most $c D/\log D$. We prove this assertion with 'triangle-free' replaced by 'regular girth 5'.


2020 ◽  
Author(s):  
Zachary Chase

Maximizing or minimizing the number of copies of a fixed graph in a large host graph is one of the most classical topics in extremal graph theory. Indeed, one of the most famous problems in extremal graph theory, the Erdős-Rademacher problem, which can be traced back to the 1940s, asks to determine the minimum number of triangles in a graph with a given number of vertices and edges. It was conjectured that the mnimum is attained by complete multipartite graphs with all parts but one of the same size whilst the remaining part may be smaller. The problem was widely open in the regime of four or more parts until Razborov resolved the problem asymptotically in 2008 as one of the first applications of his newly developed flag algebra method. This catalyzed a line of research on the structure of extremal graphs and extensions. In particular, Reiher asymptotically solved in 2016 the conjecture of Lovász and Simonovits from the 1970s that the same graphs are also minimizers for cliques of arbitrary size. This paper deals with a problem concerning the opposite direction: _What is the maximum number of triangles in a graph with a given number $n$ of vertices and a given maximum degree $D$?_ Gan, Loh and Sudakov in 2015 conjectured that the graph maximizing the number of triangles is always a union of disjoint cliques of size $D+1$ and another clique that may be smaller, and showed that if such a graph maximizes the number of triangles, it also maximizes the number of cliques of any size $r\ge 4$. The author presents a remarkably simple and elegant argument that proves the conjecture exactly for all $n$ and $D$.


2020 ◽  
pp. 33-56
Author(s):  
Fan Chung ◽  
Ron Graham

2020 ◽  
Vol 34 (10) ◽  
pp. 13881-13882
Author(s):  
David E. Narváez

The purpose of this paper is to draw attention to a particular family of quantified Boolean formulas (QBFs) stemming from encodings of some vertex Folkman problems in extremal graph theory. We argue that this family of formulas is interesting for QSAT research because it is both conceptually simple and parametrized in a way that allows for a fine-grained diversity in the level of difficulty of its instances. Additionally, when coupled with symmetry breaking, the formulas in this family exhibit backbones (unique satisfying assignments) at the top-level existential variables. This benchmark is thus suitable for addressing questions regarding the connection between the existence of backbones and the hardness of QBFs.


2019 ◽  
Vol 29 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Bo Ning ◽  
Xing Peng

AbstractThe famous Erdős–Gallai theorem on the Turán number of paths states that every graph with n vertices and m edges contains a path with at least (2m)/n edges. In this note, we first establish a simple but novel extension of the Erdős–Gallai theorem by proving that every graph G contains a path with at least $${{(s + 1){N_{s + 1}}(G)} \over {{N_s}(G)}} + s - 1$$ edges, where Nj(G) denotes the number of j-cliques in G for 1≤ j ≤ ω(G). We also construct a family of graphs which shows our extension improves the estimate given by the Erdős–Gallai theorem. Among applications, we show, for example, that the main results of [20], which are on the maximum possible number of s-cliques in an n-vertex graph without a path with ℓ vertices (and without cycles of length at least c), can be easily deduced from this extension. Indeed, to prove these results, Luo [20] generalized a classical theorem of Kopylov and established a tight upper bound on the number of s-cliques in an n-vertex 2-connected graph with circumference less than c. We prove a similar result for an n-vertex 2-connected graph with circumference less than c and large minimum degree. We conclude this paper with an application of our results to a problem from spectral extremal graph theory on consecutive lengths of cycles in graphs.


Sign in / Sign up

Export Citation Format

Share Document