High-Quality Volume Rendering of Unstructured-Grid Cell-Centered Data in CFD

2011 ◽  
Vol 34 (3) ◽  
pp. 508-516
Author(s):  
Qian-Li MA ◽  
Si-Kun LI ◽  
Xiao-Zheng BAI ◽  
Zhi-Quan CHENG ◽  
Hua-Xun XU
2012 ◽  
Vol 236-237 ◽  
pp. 1049-1053
Author(s):  
Zong Zhe Li ◽  
Zheng Hua Wang ◽  
Lu Yao ◽  
Wei Cao

An automatic agglomeration methodology to generate coarse grids for 3D flow solutions on anisotropic unstructured grids has been introduced in this paper. The algorithm combines isotropic octree based coarsening and anisotropic directional agglomeration to yield a desired coarsening ratio and high quality of coarse grids, which developed for cell-centered multigrid applications. This coarsening strategy developed is presented on an unstructured grid over 3D ONERA M6 wing. It is shown that the present method provides suitable coarsening ratio and well defined aspect ratio cells at all coarse grid levels.


2012 ◽  
Vol 542-543 ◽  
pp. 1434-1437
Author(s):  
Xiao Ping Xiao ◽  
Zi Sheng Li ◽  
Wei Gong

Aiming at the problem that rendering 3D Julia sets on CPU is slowly, a method of rendering 3D Julia sets on GPU is presented in this paper. After introducing the advantages of GPU and the operations of quaternion, the generating process of 3D Julia sets is discussed in detail. Ray tracing volume rendering algorithm is applied to obtain high quality 3D Julia sets, and escaping time algorithm is used to generate the discreet data of Julia sets, of which normal is estimated according to the original of ray and accelerated by using unbounding sphere algorithm, and the graphics examples are given to illustrate this algorithm. Finally, the factors of affecting rendering speed and refined effect are summarized. The results show that the speed of 3D Julia sets rendering on GPU is much faster than CPU, and the interactivity of rendering process is also enhanced.


2012 ◽  
Vol 241-244 ◽  
pp. 2957-2961
Author(s):  
Zong Zhe Li ◽  
Zheng Hua Wang ◽  
Wei Cao ◽  
Lu Yao

A robust aspect ratio based agglomeration algorithm to generate high quality coarse grids for unstructured grid is proposed in this paper. The algorithm focuses on multigrid techniques for the numerical solution of Euler equations, which conform to cell-centered finite volume scheme, combines isotropic vertex-based agglomeration to yield large increases in convergence rates. Aspect ratio is used as fusing weight to capture the degree of cell convexity and give an indication of cell quality, agglomerating isotropic cells sharing a common vertex. Consequently, we conduct agglomeration multigrid method to solve Euler equations on 2D isotropic unstructured grid, and compare the results with MGridGen


2004 ◽  
Vol 28 (1) ◽  
pp. 51-58 ◽  
Author(s):  
S. Guthe ◽  
W. Strasser

Sign in / Sign up

Export Citation Format

Share Document