coarse grid
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 48)

H-INDEX

28
(FIVE YEARS 4)

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2854
Author(s):  
Daniele Pinchera ◽  
Marco Donald Migliore

The aim of this contribution is to present an approach that allows to improve the quality of the reconstruction of the far-field from a small number of measured samples by means of sparse recovery using a relatively coarse grid for source positions (with sample spacing of the order of λ/8) compared to the grid usually required. In particular, the iterative method proposed employs a smooth-weighted constrained minimization, that guarantees a better probability of correct estimate of the sparse sources and an improved quality in the reconstruction, with a similar computational effort respect to the standard ℓ1 re-weighted minimization approach.


2021 ◽  
Author(s):  
Dachang Li ◽  
Corneliu-Liviu Ionescu ◽  
Baurzhan Muftakhidinov ◽  
Byron Haynes ◽  
Bakyt Yergaliyeva

Abstract Running a fine grid model with 107 - 109 of cells is possible using a supercomputer with 103 - 106 of CPUs but may not be always cost-effective. The most cost-effective way is to use a coarse grid model that is much smaller but with static/dynamic profiles very close to the fine grid model. This paper proposes a new layer optimization and upscaling method with the aim for creating a consistent coarse grid model. Unlike the industry's existing layer optimization and upscaling methods, the proposed method performs layer optimization and upscaling fully integrated with the Lorenz coefficient and curves (LCC). Coarse grid layers and their permeabilities are created by minimizing the difference between fine and coarse grid LCCs. The process consists of static and dynamic optimizations. The former is measured by LCC while the latter by pressure, GOR, and water-cut. A new LCC-based permeability upscaling method is developed to preserve the fine grid multiphase flow behaviors. A satisfactory coarse grid model is achieved when both static and dynamic criteria are met. The proposed method has been successfully applied to a giant carbonate oil field in the Caspian Sea that consists of a matrix dominated platform and a fracture/karst dominated rim. Due to the field's complex geology and high H2S content (15%), a dual porosity, dual permeability compositional model has been created to model compositional sour crude flow within and between the matrix and fracture/karst features. The reservoir drive mechanisms are fluid expansion, miscible gas injection and aquifer drive. The reservoir is undersaturated and has an abnormally high initial reservoir pressure. The fine-grid static model contains 104 million cells (370×225×625×2) and the optimized upscaled coarse-grid dynamic model has 8.3 million cells (370×225×50×2). The upscaled model can be run efficiently on the company's existing HPC infrastructure with a maximum of 64 CPUs. Excellent matches of the Lorenz coefficient maps for reservoir total/zones and Lorenz curves at all wells between the fine and coarse grid models have been achieved. Matches on the dynamic variables, e.g., pressure, gas breakthrough time, and GOR growth, in all producers are within the defined acceptable tolerances. The high quality of the static and dynamic matches between the coarse- and fine-grid models confirms that the reservoir properties of the coarse-grid model is very close to the fine-grid model and can be used a base model for history matching and uncertainty analysis.


2021 ◽  
Vol 5 (4) ◽  
pp. 145
Author(s):  
Linlin Bu ◽  
Cornelis W. Oosterlee

In this paper, we develop a suitable multigrid iterative solution method for the numerical solution of second- and third-order discrete schemes for the tempered fractional diffusion equation. Our discretizations will be based on tempered weighted and shifted Grünwald difference (tempered-WSGD) operators in space and the Crank–Nicolson scheme in time. We will prove, and show numerically, that a classical multigrid method, based on direct coarse grid discretization and weighted Jacobi relaxation, performs highly satisfactory for this type of equation. We also employ the multigrid method to solve the second- and third-order discrete schemes for the tempered fractional Black–Scholes equation. Some numerical experiments are carried out to confirm accuracy and effectiveness of the proposed method.


2021 ◽  
pp. 1420326X2110460
Author(s):  
Qianru Chen ◽  
Haidong Wang ◽  
Yuwei Dai ◽  
Yibing Hu

In order to ensure indoor air quality safety, locating the airborne contaminant sources accurately and quickly is extremely important so that timely measures can be taken to undermine the spread of pollutant and even eliminate the negative effects. Previous studies have shown that the multi-zone model can greatly reduce the inverse calculation time. However, the multi-zone model cannot describe the details of the indoor velocity field, which limits its application in complex multi-zone or large space buildings. On the premise of the accuracy and computational speed, based on the joint probability method, this study adopted the coarse-grid CFD method to speed up the process of acquiring the indoor airflow field, together with the multi-zone model method, to perform the inverse calculation of indoor airborne contaminant source location. In the backward calculation process, we conducted the ‘transpose' of the velocity field to obtain adjoint matrix, instead of computing ‘negative' of the velocity vector to save the calculation time. A two-dimensional ventilation model was utilized to validate the method, which proved the accuracy and time-saving potential of it. This study provides theoretical and practical prospect for the real-time inverse calculation of locating the indoor airborne contaminant sources.


2021 ◽  
Author(s):  
Christopher S. Bretherton ◽  
Brian Henn ◽  
Anna Kwa ◽  
Noah D Brenowitz ◽  
Oliver Watt-Meyer ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 298
Author(s):  
Aleksei Tyrylgin ◽  
Maria Vasilyeva ◽  
Dmitry Ammosov ◽  
Eric T. Chung ◽  
Yalchin Efendiev

In this paper, we consider the poroelasticity problem in fractured and heterogeneous media. The mathematical model contains a coupled system of equations for fluid pressures and displacements in heterogeneous media. Due to scale disparity, many approaches have been developed for solving detailed fine-grid problems on a coarse grid. However, some approaches can lack good accuracy on a coarse grid and some corrections for coarse-grid solutions are needed. In this paper, we present a coarse-grid approximation based on the generalized multiscale finite element method (GMsFEM). We present the construction of the offline and online multiscale basis functions. The offline multiscale basis functions are precomputed for the given heterogeneity and fracture network geometry, where for the construction, we solve a local spectral problem and use the dominant eigenvectors (appropriately defined) to construct multiscale basis functions. To construct the online basis functions, we use current information about the local residual and solve coupled poroelasticity problems in local domains. The online basis functions are used to enrich the offline multiscale space and rapidly reduce the error using residual information. Only with appropriate offline coarse-grid spaces can one guarantee a fast convergence of online methods. We present numerical results for poroelasticity problems in fractured and heterogeneous media. We investigate the influence of the number of offline and online basis functions on the relative errors between the multiscale solution and the reference (fine-scale) solution.


Author(s):  
Alfredo Buttari ◽  
Markus Huber ◽  
Philippe Leleux ◽  
Theo Mary ◽  
Ulrich Rüde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document