scholarly journals Optimal allocation of multi-type FACTS Controllers by using hybrid PSO for Total Transfer Capability Enhancement

Author(s):  
Suppakarn Chansareewittaya ◽  
Peerapol Jirapong

In this paper, the new hybrid particle swarm optimization (hybrid-PSO) based on particle swarm optimization (PSO), evolutionary programming (EP), and tabu search (TS) is developed. Hybrid-PSO is proposed to determine the optimal allocation of multi-type flexible AC transmission system (FACTS) controllers for simultaneously maximizing the power transfer capability of power transactions between generators and loads in power systems without violating system constraints. The particular optimal allocation includes optimal types, locations, and parameter settings. Four types of FACTS controllers consist of thyristor-controlled series capacitor (TCSC), thyristor-controlled phase shifter (TCPS), static var compensator (SVC), and unified power flow controller (UPFC). Power transfer capability determinations are calculated based on optimal power flow (OPF) technique. Test results on IEEE RTS 24-bus system, IEEE 30-bus system and, IEEE 118-bus system indicate that optimally placed OPF with FACTS controllers by the hybrid-PSO could enhance the higher power transfer capability more than those from EP and conventional PSO.

2016 ◽  
Vol 51 (3) ◽  
pp. 231-238
Author(s):  
M Firouzjahi ◽  
A Shokri

Among the Unified Power Flow Controller (UPFC) tools, Flexible Alternating Current Transmission Systems (FACTS) have ability to control the transmitted power, improve transient and dynamic stability and improve the profile of the voltage and damping of the oscillations in the power system. Using the proportional-integral (PI) and proportional-integral-derivative (PID) controllers is a custom method. Selecting the PI and PID coefficients is through different methods. Also designing a resistant controller which can control the system in different points of work has been continuously considered by researchers. In this regard, in order to improve the performance of UPFC controllers, adjusting its parameters is required optimally which this matter itself would facilitate accessing to control objectives. In this project, UPFC is used for damping the oscillations of the power system. Also, in order to adjust the controller parameters optimally, evolutionary algorithms like Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Hybrid Particle Swarm Optimization (HPSO) and other algorithms are used.Bangladesh J. Sci. Ind. Res. 51(3), 231-238, 2016


Sign in / Sign up

Export Citation Format

Share Document