facts controllers
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 36)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Mahdi Karami ◽  
Norman Mariun ◽  
Mohd Amran Mohd Radzi ◽  
Gohar Varamini

Electric market always prefers to use full capacity of existing power system to control the costs. Flexible alternate current transmission system (FACTS) devices introduced by Electric Power Research Institute (EPRI) to increase the usable capacity of power system. Placement of FACTS controllers in power system is a critical issue to reach their maximum advantages. This article focused on the application of FACTS devices to increase the stability of power system using artificial intelligence. Five types of series and shunt FACTS controllers are considered in this study. Continuation power flow (CPF) analysis used to calculate the collapse point of power systems. Controlling parameters of FACTS devices including their locations are determined using real number representation based genetic algorithm (RNRGA) in order to improve the secure margin of operating condition of power system. The 14 and 118 buses IEEE standard test systems are utilized to verify the recommended method. The achieved results manifestly proved the effectiveness of proposed intelligent method to increase the stability of power system by determining the optimum location and size of each type of FACTS devices.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012034
Author(s):  
Divya Shende ◽  
Prashant Jagtap ◽  
Rutuja Hiware

Abstract Flexible FACTS system of AC transmission. FACTS Devices can regulate electricity flow, develop the transmission capacity for power management. UPFC is a multipurpose fact controller carried on design of the constant voltage source. As an electrical device UPFC for rapid reactive power adjustment on high voltage electricity transport grid. Unified power flow control (UPFC). The latest FACTS gadget is UPFC. This combines series and shunting compensator characteristics and enables Power reactive and response to be controlled. UPFC utilization reduces difficulties in power quality including voltage sink and voltage surge. This article addresses UPFC and also several novel topologies for FACTS controllers.


2021 ◽  
Vol 18 (1) ◽  
pp. 63-69
Author(s):  
I.E. Nkan ◽  
E.E. Okpo ◽  
O.I. Okoro

Flexible alternating current transmission system (FACTS) devices have provided proficient answers to power system instabilities faced in the systems operations today with very little infrastructural investment fund. This paper investigates the effects of the installation of the combination of two kinds of FACTS controllers; static VAR compensator (SVC) and thyristor controlled series compensator (TCSC) compared with the installation of SVC or TCSC alone in the system. Voltage magnitude profile, active and reactive power losses of the three scenarios were achieved in the Nigerian 48-bus power system network using power system analysis toolbox (PSAT) in MATLAB environment. Simulation results obtained without and with FACTS devices optimally placed using voltage stability sensitivity factor (VSSF), revealed that the percentage decrease of the net real and reactive power losses of the combined SVC and TCSC was the highest at 31.917% whereas that of the standalone SVC and TCSC stood at 19.769% and 30.863% respectively. This shows that in addition to their capabilities to maintain acceptable voltage profile, the combination of SVC and TCSC has better compensating effect as they mitigate against power losses which was observed in their high percentage decrease in power losses compared to the standalone FACTS devices. Keywords: FACTS, optimum location, PSAT, SVC, TCSC, VSSF


Author(s):  
Rupali Brahmachary ◽  
Dipu Sarkar

The use of FACTS controllers in power grids has resulted in the improvement of stability issues related to the power systems. When the FACTS controllers are used to damp out the power systems oscillation, there series controller inverter like static synchronous series compensator (SSSC) device are the most suitable to resolve the issue. In this paper, importance is given on the optimal operation of the SSSC and to the maintenance of the small signal stability of the system. Here the main focus is to check the system response to stability after the use of SSSC device.


Author(s):  
Jawad Hameed ◽  
Hameed Ali Mohammed ◽  
Amer T. Saeed

In this paper, the voltage stability of the power system is studied during fault conditions. Enhancement of the system’s stability will be achieved by utilizing Flexible AC transmission systems (FACTS) controllers at the best place in the system. The optimum placement of (FACTS) controllers occurred on the most affected bus by the fault in the system (weakest bus). Two approaches have been used in this study to effectively obtain the best location of the (FACTS) controllers in the system. The first method is based on computing the deviation which occurs in the active power and reactive power due to the fault at each load bus at a time. Whereas the second method is performed through exploiting a MATLAB fuzzy set technique utilizing two indices: Line Flow Index (LFI) and Voltage Profile Index (VPI) during fault and steady-state conditions. The results show that both of these indices resulted in the same bus as the best location. Remedial actions in the attempt at improving in the stability of the power system are discussed taking the advantage of using (FACTS) compensation (SVC) and (STATCOM) at the most vulnerable system buses. In this work, MATLAB program with an IEEE 24 bus system is examined.


Author(s):  
Babatunde Olusegun Adewolu ◽  
Akshay Kumar Saha

Flexible alternating current transmission systems (FACTS) deployments and applications are on the increase in modern day power network systems because of their advantages over conventional ways of power network physical expansion. Therefore, a comprehensive review of FACTS controllers with their various applications is carried out in this paper. Formation of different applications and advantages of FACTS devices into voltage control, power flow control, system stability control, power quality control, and economic benefits as inferred from the literatures is among the vantage points of this presentation. FACTS background alongside different techniques of deployments, leading to various applications and performance of these devices, hitherto organized structurally based on target objectives are also explored, presented and discussed. Summarily, this study provides an overview of the background, topological structures, deployment techniques and cutting-edge utilization of FACTS controllers, with a view to acquainting power players, electrical engineers, network designers as well as researchers, with the trends in the development, status and future direction of FACTS applications. Convincingly, the content of this article will benefit all the stakeholders in the area of FACTS deployments and utilizations.


Sign in / Sign up

Export Citation Format

Share Document