scholarly journals Exploring the Outer Solar System with Solar Sailing Smallsats on Fast-Transit Trajectories, In-Flight Autonomous Assembly of Advanced Science Payloads

2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Slava Turyshev ◽  
Henry Helvajian ◽  
Louis D. Friedman ◽  
Tom Heinsheimer ◽  
Darren Garber ◽  
...  
1997 ◽  
Author(s):  
R. Lewis ◽  
G. Smith ◽  
B. Dundore ◽  
J. Fulmer ◽  
S. Chakrabarti ◽  
...  

2016 ◽  
Author(s):  
Orkan Umurhan ◽  
◽  
Oliver Luke White ◽  
Alan D. Howard ◽  
Jeffrey Moore

2006 ◽  
Vol 2 (S236) ◽  
pp. 31-34
Author(s):  
E. L. Kiseleva ◽  
V. V. Emel'yanenko

AbstractThe dynamical interrelation between resonant trans-Neptunian objects and short-period comets is studied. Initial orbits of resonant objects are based on computations in the model of the outward transport of objects during Neptune's migration in the early history of the outer Solar system. The dynamical evolution of this population is investigated for 4.5 Gyr, using a symplectic integrator. Our calculations show that resonant trans-Neptunian objects give a substantial contribution to the planetary region. We have estimated that the relative fraction of objects captured per year from the 2/3 resonance to Jupiter-family orbits with perihelion distances q<2.5 AU is 0.4×10−10 near the present epoch.


2001 ◽  
Vol 122 (1) ◽  
pp. 474-481 ◽  
Author(s):  
T. A. Michtchenko ◽  
S. Ferraz-Mello

2016 ◽  
Vol 113 (8) ◽  
pp. 2011-2016 ◽  
Author(s):  
Elishevah M. M. E. Van Kooten ◽  
Daniel Wielandt ◽  
Martin Schiller ◽  
Kazuhide Nagashima ◽  
Aurélien Thomen ◽  
...  

The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.


2002 ◽  
Vol 389 (2) ◽  
pp. 641-664 ◽  
Author(s):  
O. R. Hainaut ◽  
A. C. Delsanti

Sign in / Sign up

Export Citation Format

Share Document