thermal processing
Recently Published Documents


TOTAL DOCUMENTS

3822
(FIVE YEARS 644)

H-INDEX

81
(FIVE YEARS 11)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 510
Author(s):  
Olga Ławińska ◽  
Anna Korombel ◽  
Monika Zajemska

Poland’s management of municipal waste, which amounts to over 13 million tons/year, is not efficient—about 60% of the waste is subjected to recovery processes, about 20% of all municipal waste is converted into energy, and almost 40% is landfilled. The authors of this article recognize the potential of pyrolysis as a method of the thermal processing of waste allowing the potential of the energy contained in the waste to be utilized. Pyrolysis is an economically attractive alternative to incineration, with a significantly lower environmental impact, allowing efficient waste management and the use of pyrolysis by-products in the energy sector (pyrolysis gas), or in the building materials sector (biochar). Despite so many advantages, this method is not employed in Poland. The aim of the paper is to indicate a recommended strategy for the application of pyrolysis in Poland as a method of the thermal processing of municipal solid waste. SWOT (strengths, weaknesses, opportunities, threats) analysis was used as a research method. In the first step, on the basis of the literature review, the factors which may affect the use of pyrolysis in Poland were identified. In the second step, five experts evaluated the weights of those factors and the interactions between them. The products of the weights and interactions allowed, in accordance with SWOT analysis methodology, the most desirable strategy of pyrolysis application in Poland to be determined, which turned out to be an aggressive one. This means that pyrolysis as a thermal waste processing method should be implemented on a large scale in Poland to improve the indicators of municipal waste management.


Author(s):  
Elif Tuğçe Aksun Tümerkan

Food fraudulent activities have become a serious issue over the world recently. Seafood products have trading and profitable potential in Turkey owing to the abundance of fisheries and other species. While morphological features are commonly used for species identification in raw seafood products, this identification does not meet the correct classification in cryptic species and processed seafood products. Molecular techniques have been utilized for species authentication in processed seafood items successfully. In this study, the effect of different processing techniques on the DNA quality and DNA degradation isolated from raw and processed anchovy was investigated. Anchovy is one of the important species in both fisheries activities and processing and consumption in Turkey. For this aim, DNA was isolated from processed anchovy groups and un-processed anchovy groups as control by the same extraction methods and the quality of DNA was compared among the groups. The most common processing techniques, frying, baking, smoking, roasting, baking and grilling were applied to anchovy. The results revealed that not only different thermal processing but also treatment with acid and salt cause DNA degradation and quality loss of DNA parameters which are essential for authentication of species and traceability for public health.


Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 122
Author(s):  
Prasad Chavan ◽  
Pallavi Sharma ◽  
Sajeev Rattan Sharma ◽  
Tarsem Chand Mittal ◽  
Amit K. Jaiswal

The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by reducing loss and controlling spoilage. Among the several non-thermal processing methods, ultrasound technology has shown to be very beneficial. Ultrasound processing, whether used alone or in combination with other methods, improves food quality significantly and is thus considered beneficial. Cutting, freezing, drying, homogenization, foaming and defoaming, filtration, emulsification, and extraction are just a few of the applications for ultrasound in the food business. Ultrasounds can be used to destroy germs and inactivate enzymes without affecting the quality of the food. As a result, ultrasonography is being hailed as a game-changing processing technique for reducing organoleptic and nutritional waste. This review intends to investigate the underlying principles of ultrasonic generation and to improve understanding of their applications in food processing to make ultrasonic generation a safe, viable, and innovative food processing technology, as well as investigate the technology’s benefits and downsides. The breadth of ultrasound’s application in the industry has also been examined. This will also help researchers and the food sector develop more efficient strategies for frequency-controlled power ultrasound in food processing applications.


2022 ◽  
Vol 58 (4) ◽  
pp. 250-260
Author(s):  
Dragos Alexandrescu ◽  
Iulian Antoniac ◽  
Cristian Olteanu ◽  
Lucretia Anghel ◽  
Nicolae Sarbu ◽  
...  

In the medical field the additive manufacturing process by fused deposition modeling has gained a great importance given the ability to create complex, organic geometries, in a short time period and the possibility of high customization. By fused deposition process the part is created layer by layer and the resulting part is characterized by high anisotropy, dictated mostly by printing parameters. To alleviate the anisotropy and to study the mechanical behavior of the 3D printed parts thermal processing is used. The materials used as filament is a poly (lactic acid) with copper particles embedded for antibacterial purposes. Samples were 3D printed using a commercial printer, thermally processed and tested in compression. On the failed specimens fracture investigations were performed to understand mechanical behavior during compression. The mechanical characteristics showed improvement and the anisotropy decreased as the processing temperature increased, but the samples became brittle. The mechanical behavior changed drastically on the thermally processed samples because of structural changes: a discontinuity between exterior layers and infill layers was created post layer fusion, the first region being the one stressed and failed first during tests.


Author(s):  
С.Н. Гарибова ◽  
А.И. Исаев ◽  
С.И. Мехтиева ◽  
С.У. Атаева ◽  
Р.И. Алекперов

Specifics of "amorphous state - crystal" phase transitions in dependence on the samples obtaining method and thermal processing, as well as changes in the structure and close range order in the arrangement of the atoms of Ge20Sb20.5Te51 chalcogenide semiconductors have been studied by the x-ray diffraction and Raman spectroscopy. It has been shown that Ge20Sb20.5Te51 films obtained by thermal evaporation on an unheated substrate are amorphous; after heat treatment at 220 and 400 °C, transform into a crystalline phase with a cubic and hexagonal structure. The chemical bonds and the main structural elements that form the matrix of the investigated objects, as well as the changes that occur in them during heat treatment, have been determined.


2022 ◽  
pp. 105311
Author(s):  
Carolyn T. Mejares ◽  
Thom Huppertz ◽  
Jayani Chandrapala

Author(s):  
Nathalia G. Ribeiro ◽  
Douglas Xavier-Santos ◽  
Pedro Henrique Campelo ◽  
Jonas T. Guimarães ◽  
Tatiana C. Pimentel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document