An Improved Adaptive Genetic Algorithm Based on Human Reproduction Mode for Solving the Knapsack Problem

2010 ◽  
Vol 9 (5) ◽  
pp. 974-978 ◽  
Author(s):  
Yan Taishan
Author(s):  
ZOHEIR EZZIANE

Probabilistic and stochastic algorithms have been used to solve many hard optimization problems since they can provide solutions to problems where often standard algorithms have failed. These algorithms basically search through a space of potential solutions using randomness as a major factor to make decisions. In this research, the knapsack problem (optimization problem) is solved using a genetic algorithm approach. Subsequently, comparisons are made with a greedy method and a heuristic algorithm. The knapsack problem is recognized to be NP-hard. Genetic algorithms are among search procedures based on natural selection and natural genetics. They randomly create an initial population of individuals. Then, they use genetic operators to yield new offspring. In this research, a genetic algorithm is used to solve the 0/1 knapsack problem. Special consideration is given to the penalty function where constant and self-adaptive penalty functions are adopted.


2012 ◽  
Vol 532-533 ◽  
pp. 1785-1789
Author(s):  
Tai Shan Yan

In this study, a genetic algorithm simulating human reproduction mode (HRGA) is proposed. The genetic operators of HRGA include selection operator, help operator, crossover operator and mutation operator. The sex feature, age feature and consanguinity feature of genetic individuals are considered. Two individuals with opposite sex can reproduce the next generation if they are distant consanguinity individuals and their age is allowable. Based on this genetic algorithm, an improved evolutionary neural network algorithm named HRGA-BP algorithm is formed. In HRGA-BP algorithm, HRGA is used firstly to evolve and design the structure, the initial weights and thresholds, the training ratio and momentum factor of neural network roundly. Then, training samples are used to search for the optimal solution by the evolutionary neural network. HRGA-BP algorithm is used in motor fault diagnosis. The illustrational results show that HRGA-BP algorithm is better than traditional neural network algorithms in both speed and precision of convergence, and its validity in fault diagnosis is proved.


2014 ◽  
Vol 1 ◽  
pp. 219-222
Author(s):  
Jing Guo ◽  
Jousuke Kuroiwa ◽  
Hisakazu Ogura ◽  
Izumi Suwa ◽  
Haruhiko Shirai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document