Artificial intelligence for engineering design analysis and manufacturing
Latest Publications


TOTAL DOCUMENTS

1265
(FIVE YEARS 117)

H-INDEX

38
(FIVE YEARS 3)

Published By Cambridge University Press

1469-1760, 0890-0604

Author(s):  
Kinda Al Sayed ◽  
Peter C H. Cheng ◽  
Alan Penn

Abstract This paper presents a preliminary study into the spatial features that can be used to distinguish creativity andefficiency in design layouts, and the distinct pattern of cognitive and metacognitive activity that is associated with creative design. In a design experiment, a group of 12 architects were handed a design brief. Their drawing activity was recorded and they were required to externalize their thoughts during the design process. Both design solutions and verbal comments were analysed and modelled. A separate group of experienced architects used their expert knowledge to assign creativity and efficiency scores to the 12 design solutions. The design solutions were evaluated spatially. Protocol analysis studies including linkography and macroscopic analysis were used to discern distinctive patterns in the cognitive and metacognition activity of designs marked with the highest and least creativity scores. Entropy models of the linkographs and knowledge graphs were further introduced Finally, we assessed how creativity and efficiency correlates to experiment variables, cognitive activity, metacognitive activity, spatial and functional distribution of spaces in the design solutions, and the number and type of design constraints applied through the course of design. Through this investigation, we suggest that expert knowledge can be used to assess creativity and efficiency in designs. Our findings indicate that efficient layouts have distinct spatial features, and that cognitive and metacognitive activity in design that yields a highly creative outcome corresponds to higher frequencies of design moves and higher linkages between design moves.


Author(s):  
Mina Rahimian ◽  
Jose Pinto Duarte ◽  
Lisa Domenica Iulo

Abstract This paper discusses the development of an experimental software prototype that uses surrogate models for predicting the monthly energy consumption of urban-scale community design scenarios in real time. The surrogate models were prepared by training artificial neural networks on datasets of urban form and monthly energy consumption values of all zip codes in San Diego county. The surrogate models were then used as the simulation engine of a generative urban design tool, which generates hypothetical communities in San Diego following the county's existing urban typologies and then estimates the monthly energy consumption value of each generated design option. This paper and developed software prototype is part of a larger research project that evaluates the energy performance of community microgrids via their urban spatial configurations. This prototype takes the first step in introducing a new set of tools for architects and urban designers with the goal of engaging them in the development process of community microgrids.


Author(s):  
Hao Ji ◽  
Yan Jin

Abstract Self-organizing systems (SOS) are developed to perform complex tasks in unforeseen situations with adaptability. Predefining rules for self-organizing agents can be challenging, especially in tasks with high complexity and changing environments. Our previous work has introduced a multiagent reinforcement learning (RL) model as a design approach to solving the rule generation problem of SOS. A deep multiagent RL algorithm was devised to train agents to acquire the task and self-organizing knowledge. However, the simulation was based on one specific task environment. Sensitivity of SOS to reward functions and systematic evaluation of SOS designed with multiagent RL remain an issue. In this paper, we introduced a rotation reward function to regulate agent behaviors during training and tested different weights of such reward on SOS performance in two case studies: box-pushing and T-shape assembly. Additionally, we proposed three metrics to evaluate the SOS: learning stability, quality of learned knowledge, and scalability. Results show that depending on the type of tasks; designers may choose appropriate weights of rotation reward to obtain the full potential of agents’ learning capability. Good learning stability and quality of knowledge can be achieved with an optimal range of team sizes. Scaling up to larger team sizes has better performance than scaling downwards.


Author(s):  
Apoorv Naresh Bhatt ◽  
Anubhab Majumder ◽  
Amaresh Chakrabarti

Abstract Literature suggests that people typically understand knowledge by induction and produce knowledge by synthesis. This paper revisits the various modes of reasoning – explanatory abduction, innovative abduction, deduction, and induction – that have been proposed by earlier researchers as crucial modes of reasoning underlying the design process. First, our paper expands earlier work on abductive reasoning – an essential mode of reasoning involved in the process of synthesis – by understanding its role with the help of the “SAPPhIRE” model of causality. The explanations of abductive reasoning in design using the SAPPhIRE model have been compared with those using existing models. Second, the paper captures and analyzes various modes of reasoning during design synthesis with the help of the “Extended Integrated Model of Designing”. The analysis of participants' verbal speech and outcomes shows the model's ability to explain the various modes of reasoning that occur in design. The results indicate the above models to provide a more extensive account of reasoning in design synthesis. Earlier empirical validation of both the models lends further support to the claim of their explanatory capacity.


Author(s):  
Harshika Singh ◽  
Gaetano Cascini ◽  
Christopher McComb

Abstract It is known that wherever there is human interaction, there is social influence. Here, we refer to more influential individuals as “influencers”, who drive team processes for better or worst. Social influence gives rise to social learning, the propensity of humans to mimic the most influential individuals. As individual learning is affected by the presence of an influencer, so is an individual's idea generation . Examining this phenomenon through a series of human studies would require an enormous amount of time to study both individual and team behaviors that affect design outcomes. Hence, this paper provides an agent-based approach to study the effect of influencers during idea generation. This model is supported by the results of two empirical experiments which validate the assumptions and sustain the logic implemented in the model. The results of the model simulation make it possible to examine the impact of influencers on design outcomes, assessed in the form of exploration of design solution space and quality of the solution. The results show that teams with a few prominent influencers generate solutions with limited diversity. Moreover, during idea generation, the behavior of the teams with uniform distribution of influence is regulated by their team members' self-efficacy.


Author(s):  
Wenzhe Cun ◽  
Rong Mo ◽  
Jianjie Chu ◽  
Suihuai Yu ◽  
Huizhong Zhang ◽  
...  

Abstract Prolonged sitting in a fixed or constrained position exposes aircraft passengers to long-term static loading of their bodies, which has deleterious effects on passengers’ comfort throughout the duration of the flight. The previous studies focused primarily on office and driving sitting postures and few studies, however, focused on the sitting postures of passengers in aircraft. Consequently, the aim of the present study is to detect and recognize the sitting postures of aircraft passengers in relation to sitting discomfort. A total of 24 subjects were recruited for the experiment, which lasted for 2 h. Furthermore, a total of 489 sitting postures were extracted and the pressure data between subjects and seat was collected from the experiment. After the detection of sitting postures, eight types of sitting postures were classified based on key parts (trunk, back, and legs) of the human bodies. Thereafter, the eight types of sitting postures were recognized with the aid of pressure data of seat pan and backrest employing several machine learning methods. The best classification rate of 89.26% was obtained from the support vector machine (SVM) with radial basis function (RBF) kernel. The detection and recognition of the eight types of sitting postures of aircraft passengers in this study provided an insight into aircraft passengers’ discomfort and seat design.


Author(s):  
Siyu Zhu ◽  
Jin Qi ◽  
Jie Hu ◽  
Haiqing Huang

Abstract With the increasing demand for a personalized product and rapid market response, many companies expect to explore online user-generated content (UGC) for intelligent customer hearing and product redesign strategy. UGC has the advantages of being more unbiased than traditional interviews, yielding in-time response, and widely accessible with a sheer volume. From online resources, customers’ preferences toward various aspects of the product can be exploited by promising sentiment analysis methods. However, due to the complexity of language, state-of-the-art sentiment analysis methods are still not accurate for practice use in product redesign. To tackle this problem, we propose an integrated customer hearing and product redesign system, which combines the robust use of sentiment analysis for customer hearing and coordinated redesign mechanisms. Ontology and expert knowledges are involved to promote the accuracy. Specifically, a fuzzy product ontology that contains domain knowledges is first learned in a semi-supervised way. Then, UGC is exploited with a novel ontology-based fine-grained sentiment analysis approach. Extracted customer preference statistics are transformed into multilevels, for the automatic establishment of opportunity landscapes and house of quality table. Besides, customer preference statistics are interactively visualized, through which representative customer feedbacks are concurrently generated. Through a case study of smartphone, the effectiveness of the proposed system is validated, and applicable redesign strategies for a case product are provided. With this system, information including customer preferences, user experiences, using habits and conditions can be exploited together for reliable product redesign strategy elicitation.


Author(s):  
Yan Wang

Abstract Cyber–physical–social systems (CPSS) are physical devices that are embedded in human society and possess highly integrated functionalities of sensing, computing, communication, and control. CPSS rely on their intense collaboration and information sharing through networks to be functioning. In this paper, topology-informed network information dynamics models are proposed to characterize the evolution of information processing capabilities of CPSS nodes in networks. The models are based on a mesoscale probabilistic graph model, where the sensing and computing capabilities of the nodes are captured as the probabilities of correct predictions. A topology-informed vector autoregression model and a latent variable vector autoregression model are proposed to model the correlations between prediction capabilities of nodes as linear functional relationships. A hybrid Gaussian process regression model is also developed to capture both the nonlinear spatial and temporal correlations between nodes. The new information dynamics models are demonstrated and tested with a simulator of CPSS networks. The results show that the topological information of networks can improve the efficiency in constructing the time series models. The network topology also has influences on the prediction capabilities of CPSS.


Sign in / Sign up

Export Citation Format

Share Document