reproduction mode
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 24)

H-INDEX

10
(FIVE YEARS 3)

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 78
Author(s):  
Falguni Khan ◽  
Miltan Chandra Roy ◽  
Yonggyun Kim

Parthenogenesis is not uncommon in thrips. This asexual reproduction produces males (arrhenotokous) or female (thelytokous). Only females are found in the onion thrips (Thrips tabaci Lindeman 1889) infesting Welsh onion (Allium fistulosum) in several areas of Korea. To determine the reproduction mode of T. tabaci, thrips infesting Welsh onion were collected from different localities in Korea. Cytochrome oxidase I (COI) sequences were then assessed. Results showed that all test local populations had signature motif specific to a thelytokous type. These COI sequences were clustered with other thelytokous populations separated from arrhenotokous T. tabaci populations. In a laboratory test, individual rearing produced female progeny without any males. These results support that Korean onion thrips infesting Welsh onion have the thelytokous type of parthenogenesis. Local thrips populations exhibited significant variations in susceptibility to chemical and biological insecticides. Random amplified polymorphic DNA (RAPD) analysis indicated genetic variations of local populations. However, the genetic distance estimated from RAPD was independent of the actual distance among different local populations. These results suggest that genetic variations of T. tabaci are arisen from population subdivision due to asexual thelytokous reproductive mode.


2022 ◽  
Vol 308 (1) ◽  
Author(s):  
Josef Greimler ◽  
Eva M. Temsch ◽  
Zhiqing Xue ◽  
Hanna Weiss-Schneeweiss ◽  
Polina Volkova ◽  
...  

AbstractThe grass Deschampsia cespitosa is a variable taxon out of which many varieties, subspecies and endemic species have been separated. In this paper, the variation in genome size (GS) and ploidy of this grass including several of its subspecies and two related species in Eurasia was investigated by flow cytometric (FCM) measurements. GS and ploidy data were also related to specific environments and reproduction mode. Ploidy levels found by FCM were confirmed by chromosome counts of diploid (2n = 28) and tetraploid (2n = 52) samples. Seminiferous (seed bearing) D. cespitosa was mainly diploid (GS between 3.754 and 5.438 pg/1C). GS variation in diploids showed a geographic pattern with a significant difference (H = 41,441, P < 0.001) between European (median = 4.377 pg) and Asian (median = 4.881 pg) accessions. Genome size (1C) in tetraploids ranged from 7.9426 to 9.0399 pg. Tetraploid seminiferous D. cespitosa was found mostly in disturbed habitats in western and southern Europe, while tetraploids in Asia were registered in wet Arctic habitats. Genome size (1C between 8.3278 and 8.8603 pg) of the pseudoviviparous plants (spikelets produce plantlets asexually) of wet habitats in central and northern Europe indicated tetraploidy. A putative triploid (GS 6.6817 pg) was detected in Iceland. Summing up, we found a high variation in GS on the geographic scale with significant regional differences in diploid D. cespitosa. Among the tetraploids, the asexually reproducing plants were bound to specific habitats, while the seminiferous plants showed a habitat preference similar to the diploids.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2798
Author(s):  
Faruk Bogunić ◽  
Sonja Siljak-Yakovlev ◽  
Irma Mahmutović-Dizdarević ◽  
Alma Hajrudinović-Bogunić ◽  
Mickaël Bourge ◽  
...  

Cotoneaster integerrimus represents a multiploid and facultative apomictic system of widely distributed mountain populations. We used flow cytometry to determine genome size, ploidy level, and reproduction mode variation of the Balkan populations, supplemented by analysis of nuclear microsatellites in order to address: (i) geographic distribution and variation of cytotypes among the populations; (ii) variation of reproduction mode and the frequency of sexuality; (iii) pathways of endosperm formation among the sampled polyploids and their endosperm balance requirements; (iv) genotypic diversity and geographic distribution of clonal lineages of polyploids. The prevalence of apomictic tetraploid cytotype followed by sexual diploids and extremely rare triploids was demonstrated. This prevalence of tetraploids affected the populations’ structure composed from clonal genotypes with varying proportions. The co-occurrence of diploids and tetraploids generated higher cytotype, reproductive mode, and genotypic diversity, but mixed-ploidy sites were extremely rare. The endosperm imbalance facilitates the development and the occurrence of intermediate triploids in mixed-ploidy populations, but also different tetraploid lineages elsewhere with unbalanced endosperm. All these results showed that the South European populations of C. integerrimus have higher levels of cytotype and reproductive diversity compared to the Central European ones. Therefore, the South European populations can be considered as a potential reservoir of regional and global diversity for this species.


2021 ◽  
Author(s):  
Claire Capdevielle Dulac ◽  
Romain Benoist ◽  
Sarah Paquet ◽  
Paul-André Calatayud ◽  
Julius Obonyo ◽  
...  

Hymenopterans are haplodiploids and unlike most other Arthropods they do not possess sexual chromosomes. Sex determination typically happens via the ploidy of individuals: haploids become males and diploids become females. Arrhenotoky is believed to be the ancestral reproduction mode in Hymenopterans, with haploid males produced parthenogenetically, and diploid females produced sexually. However, a number of transitions towards thelytoky (diploid females produced parthenogenetically) have appeared in Hymenopterans, and in most cases populations or species are either totally arrhenotokous or totally thelytokous. Here we present the case of Cotesia typhae (Fernandez-Triana), a Braconidae that produces parthenogenetic females at a low frequency. The phenotyping of two laboratory strains and one natural population showed that this frequency is variable, and that this rare thelytokous phenomenon also happens in the wild. Moreover, mated females from one of the laboratory strains produce a few parthenogenetic daughters among a majority of sexual daughters. The analysis of daughters of heterozygous virgin females allowed us to show that a mechanism of automixis with central fusion is very likely at play in C. typhae. This mechanism allows some parts of the genome to remain heterozygous, especially at the chromosomes' centromeres, which can be advantageous depending on the sex determination system involved. Lastly, in most species, the origin of thelytoky is either bacterial or genetic, and an antibiotic treatment as well as PCR experiments did not demonstrate a bacterial cause in C. typhae. The unusual case of low parthenogenetic frequency described in this species constitutes another example of the fascinating diversity of sex determination systems in Arthropods.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Tae-Yoon S. Park ◽  
Jikhan Jung ◽  
Mirinae Lee ◽  
Sangmin Lee ◽  
Yong Yi Zhen ◽  
...  

The Ediacaran–Cambrian transition and the following Cambrian Explosion are among the most fundamental events in the evolutionary history of animals. Understanding these events is enhanced when phylogenetic linkages can be established among animal fossils across this interval and their trait evolution monitored. Doing this is challenging because the fossil record of animal lineages that span this transition is sparse, preserved morphologies generally simple and lifestyles in the Ediacaran and Cambrian commonly quite different. Here, we identify derived characters linking some members of an enigmatic animal group, the cloudinids, which first appeared in the Late Ediacaran, to animals with cnidarian affinity from the Cambrian Series 2 and the Miaolingian. Accordingly, we present the first case of an animal lineage represented in the Ediacaran that endured and diversified successfully throughout the Cambrian Explosion by embellishing its overall robustness and structural complexity. Among other features, dichotomous branching, present in some early cloudinids, compares closely with a cnidarian asexual reproduction mode. Tracking this morphological change from Late Ediacaran to the Miaolingian provides a unique glimpse into how a primeval animal group responded during the Cambrian Explosion.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dongjuan Yuan ◽  
Song Li ◽  
Ziyu Shang ◽  
Muchun Wan ◽  
Yu Lin ◽  
...  

Abstract Background Nematodes are a widespread and diverse group comprising free-living and parasitic species, some of which have major detrimental effects on crops, animals, and human health. Genomic comparisons of nematodes may help reveal the genetic bases for the evolution of parasitic lifestyles. Fatty acid and retinol-binding proteins (FARs) are thought to be unique to nematodes and play essential roles in their development, reproduction, infection, and possibly parasitism through promoting the uptake, transport, and distribution of lipid and retinol. However, the evolution of FAR family proteins across the phylum Nematoda remains elusive. Results We report here the evolutionary relationship of the FAR gene family across nematodes. No FAR was found in Trichocephalida species and Romanomermis culicivorax from Clade I, and FAR could be found in species from Clades III, IV, and V. FAR proteins are conserved in Clade III species and separated into three clusters. Tandem duplications and high divergence events lead to variable richness and low homology of FARs in Steinernema of Clade IVa, Strongyloides of Clade IVb, and intestinal parasitic nematodes from Clades Vc and Ve. Moreover, different richness and sequence variations of FARs in pine wood, root-knot, stem, and cyst nematodes might be determined by reproduction mode or parasitism. However, murine lungworm Angiostrongylus and bovine lungworm Dictyocaulus viviparus from Clade Vd have only 3–4 orthologs of FAR. RNA-seq data showed that far genes, especially far-1 and far-2, were highly expressed in most nematodes. Angiostrongylus cantonensis FAR-1 and FAR-3 have low sequence homology and distinct ligand-binding properties, leading to differences in the cavity volume of proteins. These data indicate that FAR proteins diverged early and experienced low selective pressure to form genus-level diversity. The far genes are present in endophyte or root-colonized bacteria of Streptomyces, Kitasatospora sp., Bacillus subtilis, and Lysobacter, suggesting that bacterial far genes might be derived from plant-parasitic nematodes by horizontal gene transfer. Conclusions Data from these comparative analyses have provided insights into genus-level diversity of FAR proteins in the phylum Nematoda. FAR diversification provides a glimpse into the complicated evolution history across free-living and parasitic nematodes.


Author(s):  
Bujun Mei ◽  
Rong Liu

Background: The manipulation of the estrous cycle or induction of estrus is a commonly used technique in sheep industry. The goal of this study was to identify and characterize differences of non-coding RNAs (lincRNAs) expression between induced estrus and natural estrus using the BGISEQ-500 plat form in 7 Mongolian sheep, which will provide insights into the regulation mechanisms of lncRNAs in different reproduction mode of sheep. Methods: During the late spring, ovarian, pituitary, hypothalamic, pineal and uterine tissue samples were collected from four artificially induced estrus and three naturally estrus Mongolian sheep. Total RNA was extracted from the five tissues using TRIzol reagent (Invitrogen) and treated with DNase I following the manufacturer’s instructions. A total of 35 sheep samples were sequenced using the BGISEQ-500 plat form. Bioinformatics methods were used to analysis expression difference analysis between groups, SNP and InDel, alternative splicing, lncRNA’s miRNA precursor prediction, lncRNA target gene and family prediction. Result: 211 novel lncRNAs were systematically identified using RNA-Seq technology. Meanwhile, we found that there are diversifications of lncRNAs in induced estrus vs. nature estrus of ewes. Therefore, we predict that, under the action of exogenous hormones, many physiological processes of ewes may be affected to varying degrees through the change of LncRNA to a variety of pathways.


2021 ◽  
Vol 6 (2) ◽  
pp. 66161
Author(s):  
Imam Bachtiar ◽  
Muhammad Irsyad Abiyusfi Ghafari ◽  
Ibadur Rahman ◽  
Baiq Hilda Astriana

Genetic diversity has an important role in the stability of coral populations in coping with disturbances. In the last three bleaching events, the coral Echinopora lamellosa survived better in the eastern- than the western- Lombok waters that are not related to algal symbiont diversity. The present study aimed to assess the genetic diversity of E. lamellosa from the two locations in the Lombok waters. The ITS1-5.8S-ITS2 (whole ITS region) marker was used to identify and to determine the genetic structure, genetic variation, and demographic pattern of E. lamellosa. The results showed that E. lamellosa of the two locations are two different populations. The haplotype diversity was very high indicating a predominance of sexual reproduction mode for both eastern and western populations. The phylogenetic topology suggests there is possible connectivity between populations, whereas the haplotype network exhibits a restricted gene flow between the two populations.  The results suggest that the present E. lamellosa populations were from both surviving colonies and new recruitment of long-distance larvae. Both population likely shares the same larvae supply brought from source-reefs in the Flores Sea or Makassar Strait by the Indonesian Throughflow. The present and previous studies revealed that genetic diversity alone yet to explain the resistance of E. lamellosa in eastern and western Lombok waters.   


2021 ◽  
Vol 13 (2) ◽  
pp. 58-63
Author(s):  
Medianeira Machado Juliana ◽  
Cristina Krycki Karine ◽  
Luis Weiler Roberto ◽  
Simioni Carine ◽  
Dall´Agnol Miguel

Author(s):  
Guillermin Agüero-Chapin ◽  
Yuliana Jiménez ◽  
Aminael Sánchez-Rodríguez ◽  
Reinaldo Molina-Ruiz ◽  
Oscar Vivanco ◽  
...  

Background: Molecular phylogenetic algorithms frequently disagree with the approaches considering reproductive compatibility and morphological criteria for species delimitation. The question stems if the resulting species boundaries from molecular, reproductive and/or morphological data are definitively not reconcilable; or if the existing phylogenetic methods are not sensitive enough to agree morphological and genetic variation in species delimitation. Objectives : We propose to DISTATIS as an integrative framework to combine alignment-based (AB) and alignment-free (AF) distance matrices from ITS2 sequences/structures to shed light whether Gelasinospora and Neurospora are sister but independent genera? Methodology: We aimed at addressing this standing issue by harmonizing genus-specific classification based on their ascospore morphology and ITS2 molecular data. To validate our proposal, three phylogenetic approaches: i) traditional alignment-based, ii) alignment-free and iii) novel distance integrative (DI)-based were comparatively evaluated on a set of Gelasinospora and Neurospora species. All considered species have been extensively characterized at both the morphological and reproductive levels and there are known incongruences between their ascospore morphology and molecular data that hampers genus-specific delimitation. Results: Traditional AB phylogenetic analyses fail at resolving the Gelasinospora and Neurospora genera into independent monophyletic clades following ascospore morphology criteria. In contrast, AF and DI approaches produced phylogenetic trees that could properly delimit the expected monophyletic clades. Conclusions: The DI approach outperformed the AF one in the sense that it could also divide the Neurospora species according to their reproduction mode.


Sign in / Sign up

Export Citation Format

Share Document