knapsack problem
Recently Published Documents


TOTAL DOCUMENTS

1677
(FIVE YEARS 301)

H-INDEX

60
(FIVE YEARS 6)

Author(s):  
Christoph Buchheim ◽  
Dorothee Henke

AbstractWe consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assuming that the leader does not have full knowledge about the follower’s problem. More precisely, adopting the robust optimization approach and assuming that the follower’s profits belong to a given uncertainty set, our aim is to compute a solution that optimizes the worst-case follower’s reaction from the leader’s perspective. By investigating the complexity of this problem with respect to different types of uncertainty sets, we make first steps towards better understanding the combination of bilevel optimization and robust combinatorial optimization. We show that the problem can be solved in polynomial time for both discrete and interval uncertainty, but that the same problem becomes NP-hard when each coefficient can independently assume only a finite number of values. In particular, this demonstrates that replacing uncertainty sets by their convex hulls may change the problem significantly, in contrast to the situation in classical single-level robust optimization. For general polytopal uncertainty, the problem again turns out to be NP-hard, and the same is true for ellipsoidal uncertainty even in the uncorrelated case. All presented hardness results already apply to the evaluation of the leader’s objective function.


2022 ◽  
Vol 11 (1) ◽  
pp. 55-72 ◽  
Author(s):  
Anima Naik ◽  
Pradeep Kumar Chokkalingam

In this paper, we propose the binary version of the Social Group Optimization (BSGO) algorithm for solving the 0-1 knapsack problem. The standard Social Group Optimization (SGO) is used for continuous optimization problems. So a transformation function is used to convert the continuous values generated from SGO into binary ones. The experiments are carried out using both low-dimensional and high-dimensional knapsack problems. The results obtained by the BSGO algorithm are compared with other binary optimization algorithms. Experimental results reveal the superiority of the BSGO algorithm in achieving a high quality of solutions over different algorithms and prove that it is one of the best finding algorithms especially in high-dimensional cases.


2022 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Hsin-Min Sun ◽  
Yu-Juan Sun

<p style='text-indent:20px;'>We analyze the method of solving the separable convex continuous quadratic knapsack problem by weighted average from the viewpoint of variable fixing. It is shown that this method, considered as a variant of the variable fixing algorithms, and Kiwiel's variable fixing method generate the same iterates. We further improve the algorithm based on the analysis regarding the semismooth Newton method. Computational results are given and comparisons are made among the state-of-the-art algorithms. Experiments show that our algorithm has significantly good performance; it behaves very much like an <inline-formula><tex-math id="M1">\begin{document}$ O(n) $\end{document}</tex-math></inline-formula> algorithm with a very small constant.</p>


Author(s):  
Steffen Goebbels ◽  
Frank Gurski ◽  
Dominique Komander

AbstractThe knapsack problem is one of the simplest and most fundamental NP-hard problems in combinatorial optimization. We consider two knapsack problems which contain additional constraints in the form of directed graphs whose vertex set corresponds to the item set. In the one-neighbor knapsack problem, an item can be chosen only if at least one of its neighbors is chosen. In the all-neighbors knapsack problem, an item can be chosen only if all its neighbors are chosen. For both problems, we consider uniform and general profits and weights. We prove upper bounds for the time complexity of these problems when restricting the graph constraints to special sets of digraphs. We discuss directed co-graphs, minimal series-parallel digraphs, and directed trees.


Author(s):  
Lin Yang ◽  
Ali Zeynali ◽  
Mohammad H. Hajiesmaili ◽  
Ramesh K. Sitaraman ◽  
Don Towsley

In this paper, we study the online multidimensional knapsack problem (called OMdKP) in which there is a knapsack whose capacity is represented in m dimensions, each dimension could have a different capacity. Then, n items with different scalar profit values and m-dimensional weights arrive in an online manner and the goal is to admit or decline items upon their arrival such that the total profit obtained by admitted items is maximized and the capacity of knapsack across all dimensions is respected. This is a natural generalization of the classic single-dimension knapsack problem and finds several relevant applications such as in virtual machine allocation, job scheduling, and all-or-nothing flow maximization over a graph. We develop two algorithms for OMdKP that use linear and exponential reservation functions to make online admission decisions. Our competitive analysis shows that the linear and exponential algorithms achieve the competitive ratios of O(θα ) and O(łogł(θα)), respectively, where α is the ratio between the aggregate knapsack capacity and the minimum capacity over a single dimension and θ is the ratio between the maximum and minimum item unit values. We also characterize a lower bound for the competitive ratio of any online algorithm solving OMdKP and show that the competitive ratio of our algorithm with exponential reservation function matches the lower bound up to a constant factor.


2021 ◽  
Vol 8 (4) ◽  
pp. 1810-1820
Author(s):  
Lanang Alun Nugraha

Travelling thief problem (TTP) merupakan gabungan dari permasalahan travelling salesman problem dan knapsack problem. travelling thief problem sendiri merupakan permasalahan NP-Hard sehingga permasalahan sebagian besar diselesaikan menggunakan algoritma heuristic dan terus berkembang seiring berjalanya waktu. Algoritma yang digunakan pada penelitian ini adalah simple random untuk pemilihan low level heuristic (LLH) dan tree physiology optimization (TPO) untuk langkah move acceptance dengan menggunakan model Hyper-Heuristics. Pada penelitian yang telah dilakukan sebelumnya algoritma TPO mampu menghasilkan nilai yang cukup kompetitif dengan waktu komputasi yang baik, sedangkan pemodelan Hyper-Heuristics dapat menghasilkan nilai yang konsisten pada data yang beragam. Penelitian diawali dengan memodelkan algoritma TPO menjadi Hyper-Heuristics dan diuji coba dengan data dari TSPLib. Dari hasil uji coba yang dilakukan dapat dilihat bagaimana performa algoritma baru pada data yang diuji. Berdasarkan hasil yang didapat dari penelitian ini dapat disimpulkan bahwa algoritma LLH TPO dapat mengolah data TTP dengan ukuran di bawah 100 dengan cukup baik terbukti dengan hasil yang lebih baik dari metode genetic programming based hyper-heuristic (GPHS) yang telah ada sebelumnya, namun pada data di atas 100 performa LLH TPO menurun jika dibandingkan dengan metode GPHS.


2021 ◽  
Vol 10 (1) ◽  
pp. 131-152
Author(s):  
Stephen Drury

Abstract We discuss the question of classifying the connected simple graphs H for which the second largest eigenvalue of the signless Laplacian Q(H) is ≤ 4. We discover that the question is inextricable linked to a knapsack problem with infinitely many allowed weights. We take the first few steps towards the general solution. We prove that this class of graphs is minor closed.


Sign in / Sign up

Export Citation Format

Share Document