scholarly journals Existence of stable standing waves for the nonlinear Schrödinger equation with mixed power-type and Choquard-type nonlinearities

2021 ◽  
Vol 7 (3) ◽  
pp. 3802-3825
Author(s):  
Chao Shi ◽  

<abstract><p>The aim of this paper is to study the existence of stable standing waves for the following nonlinear Schrödinger type equation with mixed power-type and Choquard-type nonlinearities</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ i\partial_t \psi+\Delta \psi+\lambda | \psi|^q \psi+\frac{1}{|x|^\alpha}\left(\int_{\mathbb{R}^N}\frac{| \psi|^p}{|x-y|^\mu|y|^\alpha}dy\right)| \psi|^{p-2} \psi = 0, $\end{document} </tex-math></disp-formula></p> <p>where $ N\geq3 $, $ 0 &lt; \mu &lt; N $, $ \lambda &gt; 0 $, $ \alpha\geq0 $, $ 2\alpha+\mu\leq{N} $, $ 0 &lt; q &lt; \frac{4}{N} $ and $ 2-\frac{2\alpha+\mu}{N} &lt; p &lt; \frac{2N-2\alpha-\mu}{N-2} $. We firstly obtain the best constant of a generalized Gagliardo-Nirenberg inequality, and then we prove the existence and orbital stability of standing waves in the $ L^2 $-subcritical, $ L^2 $-critical and $ L^2 $-supercritical cases by the concentration compactness principle in a systematic way.</p></abstract>


2022 ◽  
Vol 7 (4) ◽  
pp. 5957-5970
Author(s):  
Yali Meng ◽  

<abstract><p>In this paper, we consider the following nonlinear Schrödinger equation with attractive inverse-power potentials</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ i\partial_t\psi+\Delta\psi+\gamma|x|^{-\sigma}\psi+|\psi|^\alpha\psi = 0, \; \; \; (t, x)\in\mathbb{R}\times\mathbb{R}^N, $\end{document} </tex-math></disp-formula></p> <p>where $ N\geq3 $, $ 0 &lt; \gamma &lt; \infty $, $ 0 &lt; \sigma &lt; 2 $ and $ \frac{4}{N} &lt; \alpha &lt; \frac{4}{N-2} $. By using the concentration compactness principle and considering a local minimization problem, we prove that there exists a $ \gamma_0 &gt; 0 $ sufficiently small such that $ 0 &lt; \gamma &lt; \gamma_0 $ and for any $ a\in(0, a_0) $, there exist stable standing waves for the problem in the $ L^2 $-supercritical case. Our results are complement to the result of Li-Zhao in <sup>[<xref ref-type="bibr" rid="b23">23</xref>]</sup>.</p></abstract>



2006 ◽  
Vol 2006 ◽  
pp. 1-7
Author(s):  
Guanggan Chen ◽  
Jian Zhang ◽  
Yunyun Wei

This paper is concerned with the nonlinear Schrödinger equation with an unbounded potential iϕt=−Δϕ+V(x)ϕ−μ|ϕ|p−1ϕ−λ|ϕ|q−1ϕ, x∈ℝN, t≥0, where μ>0, λ>0, and 1<p<q<1+4/N. The potential V(x) is bounded from below and satisfies V(x)→∞ as |x|→∞. From variational calculus and a compactness lemma, the existence of standing waves and their orbital stability are obtained.



2012 ◽  
Vol 14 (06) ◽  
pp. 1250039 ◽  
Author(s):  
HICHEM HAJAIEJ

We extend the notion of orbital stability to systems of nonlinear Schrödinger equations, then we prove this property under suitable assumptions on the local nonlinearity involved.





Sign in / Sign up

Export Citation Format

Share Document