partial confinement
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Alexandre Louis de Almeida d’Avignon ◽  
Gustavo Abreu Malaguti

Brazil has the largest commercial beef herd in the world and is one of the most important players in the global agricultural market, notably for soybeans. Agriculture has an important demand for energy and emits significant quantities of greenhouse gases (GHG). To minimize the effects generated by livestock activities, from both the energetic and environmental perspectives, there exists the possibility of the use of biogas generated from beef cattle confinement. This productive system allows the reduction of methane emissions from enteric fermentation and from manure through the production of biogas. This has become an option for energy policy by contributing to the offer of energy and the reduction of the demand of agriculture for fossil fuels. With a renewable energy resource, the agricultural sector dependent on non-renewable resources, also reduces its dependence on exhaustible resources, so that a policy aimed at the use of biogas and partial energetic autonomy becomes strategic for the sector. The article analyses biogas production potential from waste throughout the entire beef production chain in more intensive systems (total or partial confinement of beef cattle). These solutions can contribute both to the offer of electric energy to the agricultural sector in the country, increasing its productivity, and to the reduction of greenhouse gases.


2021 ◽  
Vol 91 (4) ◽  
pp. 362-389
Author(s):  
Adam D. McArthur ◽  
Julien Bailleul ◽  
Geoffroy Mahieux ◽  
Barbara Claussmann ◽  
Alex Wunderlich ◽  
...  

ABSTRACT Concepts of the interaction between autogenic (e.g., flow process) and allogenic (e.g., tectonics) controls on sedimentation have advanced to a state that allows the controlling forces to be distinguished. Here we examine outcropping and subsurface Neogene deep-marine clastic systems that traversed the Hikurangi subduction margin via thrust-bounded trench-slope basins, providing an opportunity to examine the interplay of structural deformation and deep-marine sedimentation. Sedimentary logging and mapping of Miocene outcrops from the exhumed portion of the subduction wedge record heavily amalgamated, sand-rich lobe complexes, up to 200 m thick, which accumulated behind NE–SW-oriented growth structures. There was no significant deposition from low-density parts of the gravity flows in the basin center, although lateral fringes demonstrate fining and thinning indicative of deposits from low-density flows. Seismic data from the offshore portion of the margin show analogous lobate reflector geometries. These deposits accumulate into complexes up to 5 km wide, 8 km long, and 300 m thick, comparable in scale with the outcropping lobes on this margin. Mapping reveals lobe complexes that are vertically stacked behind thrusts. These results illustrate repeated trapping of the sandier parts of turbidity currents to form aggradational lobe complexes, with the finer-grained suspended load bypassing to areas downstream. However, the repeated development of lobes characterized by partial bypass implies that a feedback mechanism operates to perpetuate a partial confinement condition, via rejuvenation of accommodation. The mechanism proposed is a coupling of sediment loading and deformation rate, such that load-driven subsidence focuses stress on basin-bounding faults and perpetuates generation of accommodation in the basin, hence modulating tectonic forcing. Recognition of such a mechanism has implications for understanding the tectono-stratigraphic evolution of deep-marine fold and thrust belts and the distribution of resources within them.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Zohar Komargodski ◽  
Kantaro Ohmori ◽  
Konstantinos Roumpedakis ◽  
Sahand Seifnashri

Abstract We revisit the symmetries of massless two-dimensional adjoint QCD with gauge group SU(N). The dynamics is not sufficiently constrained by the ordinary symmetries and anomalies. Here we show that the theory in fact admits ∼ 22N non-invertible symmetries which severely constrain the possible infrared phases and massive excitations. We prove that for all N these new symmetries enforce deconfinement of the fundamental quark. When the adjoint quark has a small mass, m ≪ gYM, the theory confines and the non-invertible symmetries are softly broken. We use them to compute analytically the k-string tension for N ≤ 5. Our results suggest that the k-string tension, Tk, is Tk ∼ |m| sin(πk/N) for all N. We also consider the dynamics of adjoint QCD deformed by symmetric quartic fermion interactions. These operators are not generated by the RG flow due to the non-invertible symmetries, thus violating the ordinary notion of naturalness. We conjecture partial confinement for the deformed theory by these four-fermion interactions, and prove it for SU(N ≤ 5) gauge theory. Comparing the topological phases at zero and large mass, we find that a massless particle ought to appear on the string for some intermediate nonzero mass, consistent with an emergent supersymmetry at nonzero mass. We also study the possible infrared phases of adjoint QCD allowed by the non-invertible symmetries, which we are able to do exhaustively for small values of N. The paper contains detailed reviews of ideas from fusion category theory that are essential for the results we prove.


2021 ◽  
Vol 91 (1) ◽  
pp. 34-65
Author(s):  
Zoë A. Cumberpatch ◽  
Ian A. Kane ◽  
Euan L. Soutter ◽  
David M. Hodgson ◽  
Christopher A-L. Jackson ◽  
...  

ABSTRACTBehavior of sediment gravity flows can be influenced by seafloor topography associated with salt structures; this can modify the depositional architecture of deep-water sedimentary systems. Typically, salt-influenced deep-water successions are poorly imaged in seismic reflection data, and exhumed systems are rare, hence the detailed sedimentology and stratigraphic architecture of these systems remains poorly understood.The exhumed Triassic (Keuper) Bakio and Guernica salt bodies in the Basque–Cantabrian Basin, Spain, were active during deep-water sedimentation. The salt diapirs grew reactively, then passively, during the Aptian–Albian, and are flanked by deep-water carbonate (Aptian–earliest Albian Urgonian Group) and siliciclastic (middle Albian–Cenomanian Black Flysch Group) successions. The study compares the depositional systems in two salt-influenced minibasins, confined (Sollube basin) and partially confined (Jata basin) by actively growing salt diapirs, comparable to salt-influenced minibasins in the subsurface. The presence of a well-exposed halokinetic sequence, with progressive rotation of bedding, beds that pinch out towards topography, soft-sediment deformation, variable paleocurrents, and intercalated debrites indicate that salt grew during deposition. Overall, the Black Flysch Group coarsens and thickens upwards in response to regional axial progradation, which is modulated by laterally derived debrites from halokinetic slopes. The variation in type and number of debrites in the Sollube and Jata basins indicates that the basins had different tectonostratigraphic histories despite their proximity. In the Sollube basin, the routing systems were confined between the two salt structures, eventually depositing amalgamated sandstones in the basin axis. Different facies and architectures are observed in the Jata basin due to partial confinement.Exposed minibasins are individualized, and facies vary both spatially and temporally in agreement with observations from subsurface salt-influenced basins. Salt-related, active topography and the degree of confinement are shown to be important modifiers of depositional systems, resulting in facies variability, remobilization of deposits, and channelization of flows. The findings are directly applicable to the exploration and development of subsurface energy reservoirs in salt basins globally, enabling better prediction of depositional architecture in areas where seismic imaging is challenging.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Chenglin Wang ◽  
Jian Zhang

<p style='text-indent:20px;'>In this paper, we study the nonlinear Schrödinger equation with a partial confinement. By applying the cross-constrained variational arguments and invariant manifolds of the evolution flow, the sharp condition for global existence and blowup of the solution is derived.</p>


2020 ◽  
Vol 28 (4) ◽  
pp. 8-14
Author(s):  
Youcef Ghernouti ◽  
Bahia Rabehi

AbstractThis paper presents the results of an experimental study that investigates the compression behavior of concrete and evaluates the effect of hybrid reinforcement by multiple geometries, and total and partial confinement, using CFRP and GFRP composite materials.A total of nine (09) variants of concrete cylindrical specimens, including one (01) variant of unconfined concrete and eight (08) variants of confined concrete with different geometries were subjected to axial load compression.The objectives of this study were to verify the applicability and effectiveness of partial and total confinement to improve the behavior of concrete, evaluate the effect of the hybrid confinement used, and obtain a typical reinforced model.The results obtained clearly show the effectiveness of the hybrid confinement and partially confined concrete in improving the compressive strength and deformation of the concrete, so it is possible to replace CFRP total confinement by partially confined concrete with two CFRP layers or by a hybrid confinement with a CFRP layer in the central zone and GFRP layers on the top and bottom of the specimen.


Sign in / Sign up

Export Citation Format

Share Document