compactness principle
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 7 (4) ◽  
pp. 5957-5970
Author(s):  
Yali Meng ◽  

<abstract><p>In this paper, we consider the following nonlinear Schrödinger equation with attractive inverse-power potentials</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ i\partial_t\psi+\Delta\psi+\gamma|x|^{-\sigma}\psi+|\psi|^\alpha\psi = 0, \; \; \; (t, x)\in\mathbb{R}\times\mathbb{R}^N, $\end{document} </tex-math></disp-formula></p> <p>where $ N\geq3 $, $ 0 &lt; \gamma &lt; \infty $, $ 0 &lt; \sigma &lt; 2 $ and $ \frac{4}{N} &lt; \alpha &lt; \frac{4}{N-2} $. By using the concentration compactness principle and considering a local minimization problem, we prove that there exists a $ \gamma_0 &gt; 0 $ sufficiently small such that $ 0 &lt; \gamma &lt; \gamma_0 $ and for any $ a\in(0, a_0) $, there exist stable standing waves for the problem in the $ L^2 $-supercritical case. Our results are complement to the result of Li-Zhao in <sup>[<xref ref-type="bibr" rid="b23">23</xref>]</sup>.</p></abstract>


Author(s):  
Xilin Dou ◽  
xiaoming he

This paper deals with a class of fractional Schr\”{o}dinger-Poisson system \[\begin{cases}\displaystyle (-\Delta )^{s}u+V(x)u-K(x)\phi |u|^{2^*_s-3}u=a (x)f(u), &x \in \R^{3}\\ (-\Delta )^{s}\phi=K(x)|u|^{2^*_s-1}, &x \in \R^{3}\end{cases} \]with a critical nonlocal term and multiple competing potentials, which may decay and vanish at infinity, where $s \in (\frac{3}{4},1)$, $ 2^*_s = \frac{6}{3-2s}$ is the fractional critical exponent. The problem is set on the whole space and compactness issues have to be tackled. By employing the mountain pass theorem, concentration-compactness principle and approximation method, the existence of a positive ground state solution is obtained under appropriate assumptions imposed on $V, K, a$ and $f$.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jungang Li ◽  
Guozhen Lu ◽  
Maochun Zhu

Abstract The concentration-compactness principle for the Trudinger–Moser-type inequality in the Euclidean space was established crucially relying on the Pólya–Szegő inequality which allows to adapt the symmetrization argument. As far as we know, the first concentration-compactness principle of Trudinger–Moser type in non-Euclidean settings, such as the Heisenberg (and more general stratified) groups where the Pólya–Szegő inequality fails, was found in [J. Li, G. Lu and M. Zhu, Concentration-compactness principle for Trudinger–Moser inequalities on Heisenberg groups and existence of ground state solutions, Calc. Var. Partial Differential Equations 57 2018, 3, Paper No. 84] by developing a nonsmooth truncation argument. In this paper, we establish the concentration-compactness principle of Trudinger–Moser type on any compact Riemannian manifolds as well as on the entire complete noncompact Riemannian manifolds with Ricci curvature lower bound. Our method is a symmetrization-free argument on Riemannian manifolds where the Pólya–Szegő inequality fails. This method also allows us to give a completely symmetrization-free argument on the entire Heisenberg (or stratified) groups which refines and improves a proof in the paper of Li, Lu and Zhu. Our results also show that the bounds for the suprema in the concentration-compactness principle on compact manifolds are continuous and monotone increasing with respect to the volume of the manifold.


Author(s):  
Giovany M. Figueiredo ◽  
Sandra I. Moreira ◽  
Ricardo Ruviaro

Our main goal is to explore the existence of positive solutions for a class of nonlinear fractional Schrödinger equation involving supercritical growth given by $$ (- \Delta)^{\alpha} u + V(x)u=p(u),\quad x\in \mathbb{R^N},\ N \geq 1. $$ We analyze two types of problems, with $V$ being periodic and asymptotically periodic; for this we use a variational method, a truncation argument and a concentration compactness principle.


2021 ◽  
Vol 11 (1) ◽  
pp. 243-267
Author(s):  
Gustavo S. Costa ◽  
Giovany M. Figueiredo

Abstract We show existence and concentration results for a class of p&q critical problems given by − d i v a ϵ p | ∇ u | p ϵ p | ∇ u | p − 2 ∇ u + V ( z ) b | u | p | u | p − 2 u = f ( u ) + | u | q ⋆ − 2 u in R N , $$-div\left(a\left(\epsilon^{p}|\nabla u|^{p}\right) \epsilon^{p}|\nabla u|^{p-2} \nabla u\right)+V(z) b\left(|u|^{p}\right)|u|^{p-2} u=f(u)+|u|^{q^{\star}-2} u\, \text{in} \,\mathbb{R}^{N},$$ where u ∈ W 1,p (ℝ N ) ∩ W 1,q (ℝ N ), ϵ > 0 is a small parameter, 1 < p ≤ q < N, N ≥ 2 and q * = Nq/(N − q). The potential V is positive and f is a superlinear function of C 1 class. We use Mountain Pass Theorem and the penalization arguments introduced by Del Pino & Felmer’s associated to Lions’ Concentration and Compactness Principle in order to overcome the lack of compactness.


Author(s):  
KEVIN BEANLAND ◽  
RYAN M. CAUSEY

Abstract For 0 ≤ ξ ≤ ω1, we define the notion of ξ-weakly precompact and ξ-weakly compact sets in Banach spaces and prove that a set is ξ-weakly precompact if and only if its weak closure is ξ-weakly compact. We prove a quantified version of Grothendieck’s compactness principle and the characterisation of Schur spaces obtained in [7] and [9]. For 0 ≤ ξ ≤ ω1, we prove that a Banach space X has the ξ-Schur property if and only if every ξ-weakly compact set is contained in the closed, convex hull of a weakly null (equivalently, norm null) sequence. The ξ = 0 and ξ= ω1 cases of this theorem are the theorems of Grothendieck and [7], [9], respectively.


2021 ◽  
Vol 6 (12) ◽  
pp. 13057-13071
Author(s):  
Xionghui Xu ◽  
◽  
Jijiang Sun

<abstract><p>In this paper, we consider the following periodic discrete nonlinear Schrödinger equation</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} Lu_{n}-\omega u_{n} = g_{n}(u_{n}), \qquad n = (n_{1}, n_{2}, ..., n_{m})\in \mathbb{Z}^{m}, \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>where $ \omega\notin \sigma(L) $(the spectrum of $ L $) and $ g_{n}(s) $ is super or asymptotically linear as $ |s|\to\infty $. Under weaker conditions on $ g_{n} $, the existence of ground state solitons is proved via the generalized linking theorem developed by Li and Szulkin and concentration-compactness principle. Our result sharply extends and improves some existing ones in the literature.</p></abstract>


Author(s):  
Laura Baldelli ◽  
Ylenia Brizi ◽  
Roberta Filippucci

AbstractWe prove existence results in all of $${\mathbb {R}}^N$$ R N for an elliptic problem of (p, q)-Laplacian type involving a critical term, nonnegative weights and a positive parameter $$\lambda $$ λ . In particular, under suitable conditions on the exponents of the nonlinearity, we prove existence of infinitely many weak solutions with negative energy when $$\lambda $$ λ belongs to a certain interval. Our proofs use variational methods and the concentration compactness principle. Towards this aim we give a detailed proof of tight convergence of a suitable sequence.


2020 ◽  
Vol 10 (1) ◽  
pp. 400-419 ◽  
Author(s):  
Sihua Liang ◽  
Patrizia Pucci ◽  
Binlin Zhang

Abstract In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, $$\begin{array}{} \displaystyle -\left(a + b\int\limits_{\mathbb{R}^N} |\nabla u|^2 dx\right){\it\Delta} u = \alpha k(x)|u|^{q-2}u + \beta\left(\,\,\displaystyle\int\limits_{\mathbb{R}^N}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u, \quad x \in \mathbb{R}^N, \end{array}$$ where a > 0, b ≥ 0, 0 < μ < N, N ≥ 3, α and β are positive real parameters, $\begin{array}{} 2^*_{\mu} = (2N-\mu)/(N-2) \end{array}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, k ∈ Lr(ℝN), with r = 2∗/(2∗ − q) if 1 < q < 2* and r = ∞ if q ≥ 2∗. According to the different range of q, we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.


Sign in / Sign up

Export Citation Format

Share Document