Anisotropic P-P and P-Sv prestack depth migration of 4-C seismic data, offshore Trinidad

Author(s):  
Tony D. Johns ◽  
Carmen Vito and Raul Sarmiento
Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


2007 ◽  
Vol 2007 (1) ◽  
pp. 1-7
Author(s):  
Tony Johns ◽  
Carmen Vito ◽  
Raul Sarmiento

1998 ◽  
Vol 286 (1-4) ◽  
pp. 193-208 ◽  
Author(s):  
B.C. Zelt ◽  
M. Talwani ◽  
C.A. Zelt

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE269-VE280 ◽  
Author(s):  
Priyank Jaiswal ◽  
Colin A. Zelt

Imaging 2D multichannel land seismic data can be accomplished effectively by a combination of traveltime inversion and prestack depth migration (PSDM), referred to as unified imaging. Unified imaging begins by inverting the direct-arrival times to estimate a velocity model that is used in static corrections and stacking velocity analysis. The interval velocity model (from stacking velocities) is used for PSDM. The stacked data and the PSDM image are interpreted for common horizons, and the corresponding wide-aperture reflections are identified in the shot gathers. Using the interval velocity model, the stack interpretations are inverted as zero-offset reflections to constrain the corresponding interfaces in depth; the interval velocity model remains stationary. We define a coefficient of congruence [Formula: see text] that measures the discrepancy between horizons from the PSDM image andtheir counterparts from the zero-offset inversion. A value of unity for [Formula: see text] implies that the interpreted and inverted horizons are consistent to within the interpretational uncertainties, and the unified imaging is said to have converged. For [Formula: see text] greater than unity, the interval velocity model and the horizon depths are updated by jointly inverting the direct arrivals with the zero-offset and wide-aperture reflections. The updated interval velocity model is used again for both PSDM and a zero-offset inversion. Interpretations of the new PSDM image are the updated horizon depths. The unified imaging is applied to seismic data from the Naga Thrust and Fold Belt in India. Wide-aperture and zero-offset data from three geologically significant horizons are used. Three runs of joint inversion and PSDM are required in a cyclic manner for [Formula: see text] to converge to unity. A joint interpretation of the final velocity model and depth image reveals the presence of a triangle zone that could be promising for exploration.


2007 ◽  
Vol 26 (10) ◽  
pp. 1262-1265 ◽  
Author(s):  
Stéphane Gesbert ◽  
Chris Haneveld ◽  
Saad Saleh

2013 ◽  
Vol 17 (0) ◽  
pp. 11-22 ◽  
Author(s):  
Gou Fujie ◽  
Shuichi Kodaira ◽  
Takeshi Sato ◽  
Kazuya Shiraishi ◽  
Eiichi Asakawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document