interval velocity
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 1)

Geophysics ◽  
2021 ◽  
pp. 1-51
Author(s):  
Chen Bao ◽  
Juan R. Jimenez ◽  
Stephan Gelinsky ◽  
Raphic van der Weiden

Spectral decomposition is a proven tool in seismic interpretation, aiding interpreters to highlight channels, map temporal bed thickness and other geological discontinuities. Once seismic data is spectrally decomposed, notch patterns in the amplitude spectra are indicative of the reservoir layer’s thickness and/or its interval velocity. Additional cepstral decomposition will allow direct extraction of bed time-thickness or arrival time under particular reflectivity series setup. We build on these observations to establish a more generalized workflow for reflectivity retrieval method without the need to understand the details of the wavelet, provided the starting seismic is stably phased via phase correction during processing. We demonstrate reflector time and its ‘apparent strength’ can be identified in a transformed seismic resonance domain resulted from a modified cepstrum analysis. In this domain, each reflector can be characterized from obvious linear hot spots. The timing and strength of those linear hot spots will reveal reflector times and scaled reflectivity coefficients. This new method is subsequently applied for thickness prediction of a target reservoir in a complex geological setting, with large thickness variations and weak impedance contrast with underlying lithology previously complicating identification of base-reservoir. In a deep-water field blind test, the sand thicknesses evaluated from this method are found to be close to true vertical thickness found in wells.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6300
Author(s):  
Kamila Wawrzyniak-Guz ◽  
Jadwiga A. Jarzyna ◽  
Krzysztof Pieniądz ◽  
Krzysztof Starzec

An appropriate velocity model from well logs is a key issue in the processing and interpretation of seismic data. In a deep borehole located in the central part of the Polish Outer Carpathians, the sonic measurements were inadequate for seismic purposes due to the poor quality of data and gaps in the logging. Multiple regression (MR) and a modified Faust equation were proposed to model the velocity log. MR estimated the P-wave slowness as a dependent variable on the basis of sets of various logs as independent variables. The solutions were verified by the interval velocity from Check Shots (CS) and by the convergence of synthetic seismograms and the real seismic traces. MR proved to be an effective method when a set of other logs was available. The modified Faust method allowed computation of P-wave velocity based on the shallow resistivity logs, depth, and compaction factor. Faust coefficients were determined according to the lithology and stratigraphy divisions and were calibrated with the use of the velocity previously determined in the MR analysis. The modified Faust equation may be applied in nearby old wells with limited logging data, particularly with no sonic logs, where MR could not be successfully applied.


2021 ◽  
Vol 10 (2) ◽  
pp. 117-128
Author(s):  
Khusmia Karin ◽  
. Sudarmaji

Block F3 North Sea is a block with pore pressure values that vary over time due to complex geological conditions such as burial and various sedimentation zones. Pore pressure is one of the important aspects that need to be analyzed as a basis for the identification of zones and overpressure mechanisms. Overpressure is a greater pore pressure condition than normal pressure and may cause drilling problems, such as kicks, blowouts, etc. This study calculated pore pressure values using the eaton method approach with well data and seismic data. Both data are integrated for generating pore pressure values in 1D and 3D. 1D Modelling uses Interactive Petrophysics 3.5, while 3D modeling uses Petrel software. In 3D modeling, the variables used are interval velocity and inversion velocity obtained by acoustic impedance inversion. The sub-variables used are the inversion density and the regression density obtained from well density acoustic impedance inversion. The existence of a 1D overpressure zone at a depth of 1,100 – 1,800 m with an overpressure value of 3,836 – 18,975 kPa. In addition, the overpressure value based on the 3D model is 8,000 – 18,000 kPa. The overpressure zone is validated using an acoustic impedance inversion model with a high value of 5,200 – 5,380 (m/s)*(gr/cc). Overpressure in Block F3 is predicted to occur from disequilibrium compaction..


2020 ◽  
Vol 82 (6) ◽  
pp. 29-37
Author(s):  
Sudra Irawan ◽  
Siti Noor Chayati ◽  
Sismanto Sismanto

The tomography method requires an excellent initial velocity model. On the horizon based tomography, it will correct the travel time error of seismic waves along the horizon which is analysed using input results from the analysis of residual depth moveout. In this study, a semblance residual moveout analysis will be conducted after the interval velocity model has applied to the SBI field seismic data (CDP Gathers and RMS velocity). Based on the imaging results generated by the PSDM running process, an aperture value of 550 for inline and 800 for crossline is selected. PSDM generated from the initial interval velocity model has an acoustic impedance value between 1000 kg/m2s to 14339.2 kg/m2s. The PSDM process, residual moveout analysis, and horizon-based tomography are carried out iteratively until the error in the interval velocity model approaches zero. In this study, five iterations were performed. The resulting residual moveout is increasingly oscillating around zero after the 5th iteration, which indicates that the error in the interval velocity model is getting smaller. There are two types of residual moveout, namely residuals moveout positively and residuals moveout negatively. Residual moveout positive indicates that the velocity used is too high, while the residual moveout negative indicates that the velocity used is too low. The identification of interval velocity model errors with analysis of residual moveout semblance is calculated from depth gathers. The semblance residual moveout analysis is used for the Pre Stack Depth Migration (PSDM) depth image analysis stage along with the marker (well data). .


2020 ◽  
Vol 17 (6) ◽  
pp. 1556-1578
Author(s):  
Raman Chahal ◽  
Saurabh Datta Gupta

AbstractGeoscientific evidence shows that various parameters such as compaction, buoyancy effect, hydrocarbon maturation, gas effect and tectonic activities control the pore pressure of sub-surface geology. Spatially controlled geoscientific data in the tectonically active areas is significantly useful for robust estimation of pre-drill pore pressure. The reservoir which is tectonically complex and pore pressure is changing frequently that circumference motivated us to conduct this study. The changes in pore pressure have been captured from the fine-scale to the broad scale in the Jaisalmer sub-basin. Pore pressure variation has been distinctly observed in pre- and post-Jurassic age based on the current study. Post-stack seismic inversion study was conducted to capturing the variation of pore pressure. Analysis of low-frequency spectrum and integrated interval velocity model provided a detailed feature of pore pressure in each compartment of the study area. Pore pressure estimated from well log data was correlated with seismic inversion based result. Based on the current study one well has been proposed where pore pressure was estimated and two distinguished trends are identified in the study zone. The approaches of the current study were analysed thoroughly and it will be highly useful in complex reservoir condition where pore pressure varies frequently.


Sign in / Sign up

Export Citation Format

Share Document