Processing Workflow for the Dynamic Interpretation of Very-high-resolution P-wave Seismic Data

Author(s):  
R. Isaenkov ◽  
A.I. Ponimaskin ◽  
M.J. Tokarev
2004 ◽  
Vol 213 (1-4) ◽  
pp. 73-89 ◽  
Author(s):  
T. Marsset ◽  
B. Marsset ◽  
Y. Thomas ◽  
A. Cattaneo ◽  
E. Thereau ◽  
...  

1999 ◽  
Vol 158 (1-4) ◽  
pp. 89-109 ◽  
Author(s):  
T Marsset ◽  
B Tessier ◽  
J.-Y Reynaud ◽  
M De Batist ◽  
C Plagnol

1998 ◽  
Vol 46 (2) ◽  
pp. 105-120 ◽  
Author(s):  
Marsset ◽  
Missiaen ◽  
De Roeck ◽  
Noble ◽  
Versteeg ◽  
...  

2009 ◽  
Vol 29 (10) ◽  
pp. 1343-1359 ◽  
Author(s):  
Massimo Zecchin ◽  
Giuliano Brancolini ◽  
Luigi Tosi ◽  
Federica Rizzetto ◽  
Mauro Caffau ◽  
...  

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. B181-B192 ◽  
Author(s):  
Florent Colin ◽  
Stéphan Ker ◽  
Bruno Marsset

Very-high-resolution (VHR) marine seismic reflection helps to identify and characterize potential geohazards occurring in the upper part (300 m) of the subseafloor. Although the lateral and vertical resolutions achieved in shallow water depths ([Formula: see text]) using conventional surface-towed technology are adequate, these resolutions quickly deteriorate at greater water depths. The SYstème SIsmique de Fond (SYSIF), a multichannel deep-towed seismic system, has been designed to acquire VHR data (frequency bandwidth [220–1050 Hz] and vertical resolution of 0.6 m) at great water depths. However, the processing of deep-towed multichannel data is challenging because the source and the receivers are constantly moving with respect to each other according to the towing configuration. We have introduced a new workflow that allows the application of conventional processing algorithms to extended deep-towed seismic data sets. First, a relocation of the source and receivers is necessary to obtain a sufficiently accurate acquisition geometry. Variations along the profile in the depth of the deep-towed system result in a complex geometry in which the source and receiver depth vary separately and do not share the same acquisition datum. We have designed a dedicated datuming algorithm to shift the source and receivers to the same datum. Thus, the procedure allows the application of conventional processing algorithms to perform velocity analysis and depth imaging and therefore allows access to the full potential of the seismic system. We have successfully applied this methodology to deep-towed multichannel data from the western Black Sea. In particular, the derived velocity model highlights shallow gas charged anticline structures with unrivaled resolution.


Author(s):  
F. Hernandez ◽  
B. Marsset ◽  
B. Savoye ◽  
Y.H. De Roeck ◽  
J. Meunier ◽  
...  

2020 ◽  
Author(s):  
Guido Russo ◽  
Vincenzo Serlenga ◽  
Grazia De Landro ◽  
Ortensia Amoroso ◽  
Gaetano Festa ◽  
...  

<p>The anelastic attenuation of rocks strongly depends on the contained fluid physical state and saturation. Furthermore, it is more sensitive than elastic parameters to changes in the physical state of materials. In a geologically complex  volcanic context, where fluids play a very important role, anelastic imaging of the subsoil is therefore a very powerful tool for a better understanding of its dynamics.</p><p>In this study we present a robust workflow aimed at retrieve accurate 1-D and 3-D anelastic models from the processing of active seismic data, in terms of lateral and depth variations of P-wave quality factors Q<sub>P</sub>. This methodology has been applied to data collected during a high resolution active seismic experiment in a very small-scale volcanic volume, the Solfatara crater, within Campi Flegri caldera, Southern Italy. The presented methodology is developed in three distinct steps: 1) the active seismic data have been properly processed and analyzed for measuring the t* attenuation parameter for all possible source-receivers couples. First, the source contribution has been removed by cross-correlating the recorded signal with the sweep function of the Vibroseis, which was the adopted active seismic source. Then, the spectral decay method has been applied in order to compute the t* values. 2) A reference 1-D attenuation model has been retrieved by means of a grid search procedure aiming at finding the 1-D Qp structure that minimizes the residual between the average observed t* and the theoretical t* distributions. The obtained starting reference model allowed to build a preliminary map of t* residuals through which the retrieved t* dataset has been validated. 3) The 15,296 t* measurements have been inverted by means of a linearized, perturbative approach, in a 160 x 160 x 45 m<sup>3 </sup>tomographic grid.</p><p>The retrieved 3-D attenuation model describes the first 30 m depths of Solfatara volcano as composed of very high attenuating materials, with Qp values ranging between 5 and 40. The very low Qp values, correlated with low Vp values retrieved by a previous tomographic work carried out in the area, indicate the low consolidation degree of very superficial volcanic materials of Solfatara volcano. Finally, in the NE part of the crater, lower attenuating bodies have been imaged: it is a further hint for characterizing this area of the volcano as the shallow release of the CO<sub>2 </sub>plume through the main fumaroles of the crater.</p>


Sign in / Sign up

Export Citation Format

Share Document