Differential Evolution Algorithm with Space Reduction for Solving Large-Scale Global Optimization Problems

Author(s):  
Ahmed Fouad Ali ◽  
Nashwa Nageh Ahmed

Differential evolution algorithm (DE) is one of the most applied meta-heuristics algorithm for solving global optimization problems. However, the contributions of applying DE for large-scale global optimization problems are still limited compared with those problems for low dimensions. In this chapter, a new differential evolution algorithm is proposed in order to solve large-scale optimization problems. The proposed algorithm is called differential evolution with space partitioning (DESP). In DESP algorithm, the search variables are divided into small groups of partitions. Each partition contains a certain number of variables and this partition is manipulated as a subspace in the search process. Searching a limited number of variables in each partition prevents the DESP algorithm from wandering in the search space especially in large-scale spaces. The proposed algorithm is investigated on 15 benchmark functions and compared against three variants DE algorithms. The results show that the proposed algorithm is a cheap algorithm and obtains good results in a reasonable time.

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Ali Wagdy Mohamed ◽  
Abdulaziz S. Almazyad

This paper presents Differential Evolution algorithm for solving high-dimensional optimization problems over continuous space. The proposed algorithm, namely, ANDE, introduces a new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best, better, and the worst individuals among the three randomly selected vectors. The mutation rule is combined with the basic mutation strategy DE/rand/1/bin, where the new triangular mutation rule is applied with the probability of 2/3 since it has both exploration ability and exploitation tendency. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which in turn can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 20 standard high-dimensional benchmark numerical optimization problems for the IEEE CEC-2010 Special Session and Competition on Large Scale Global Optimization. The comparison results between ANDE and its versions and the other seven state-of-the-art evolutionary algorithms that were all tested on this test suite indicate that the proposed algorithm and its two versions are highly competitive algorithms for solving large scale global optimization problems.


Sign in / Sign up

Export Citation Format

Share Document