Deadline-Constrained Cost-Effective Load-Balanced Improved Genetic Algorithm for Workflow Scheduling

Author(s):  
Sandeep Kumar Bothra ◽  
Sunita Singhal ◽  
Hemlata Goyal

Resource scheduling in a cloud computing environment is noteworthy for scientific workflow execution under a cost-effective deadline constraint. Although various researchers have proposed to resolve this critical issue by applying various meta-heuristic and heuristic approaches, no one is able to meet the strict deadline conditions with load-balanced among machines. This article has proposed an improved genetic algorithm that initializes the population with a greedy strategy. Greedy strategy assigns the task to a virtual machine that is under loaded instead of assigning the tasks randomly to a machine. In general workflow scheduling, task dependency is tested after each crossover and mutation operators of genetic algorithm, but here the authors perform after the mutation operation only which yield better results. The proposed model also considered booting time and performance variation of virtual machines. The authors compared the algorithm with previously developed heuristics and metaheuristics both and found it increases hit rate and load balance. It also reduces execution time and cost.

2014 ◽  
Vol 716-717 ◽  
pp. 391-394
Author(s):  
Li Mei Guo ◽  
Ai Min Xiao

in architectural decoration process, pressure-bearing capacity test is the foundation of design, and is very important. To this end, a pressure-bearing capacity test method in architectural decoration design is proposed based on improved genetic algorithm. The selection, crossover and mutation operators in genetic algorithm are improved respectively. Using its fast convergence characteristics eliminate the pressure movement in the calculation process. The abnormal area of pressure-bearing existed in buildings which can ensure to be tested is added, to obtain accurate distribution information of the abnormal area of pressure-bearing. Simulation results show that the improved genetic algorithm has good convergence, can accurately test the pressure-bearing capacity in architectural decoration.


2011 ◽  
Vol 347-353 ◽  
pp. 1458-1461
Author(s):  
Hong Fan ◽  
Yi Xiong Jin

Improved genetic algorithm for solving the transmission network expansion planning is presented in the paper. The module which considered the investment costs of new transmission facilities. It is a large integer linear optimization problem. In this work we present improved genetic algorithm to find the solution of excellent quality. This method adopts integer parameter encoded style and has nonlinear crossover and mutation operators, owns strong global search capability. Tests are carried out using a Brazilian Southern System and the results show the good performance.


2014 ◽  
Vol 511-512 ◽  
pp. 904-908 ◽  
Author(s):  
Tong Jie Zhang ◽  
Yan Cao ◽  
Xiang Wei Mu

An algorithm of weighted k-means clustering is improved in this paper, which is based on improved genetic algorithm. The importance of different contributors in the process of manufacture is not the same when clustering, so the weight values of the parameters are considered. Retaining the best individuals and roulette are combined to decide which individuals are chose to crossover or mutation. Dynamic mutation operators are used here to decrease the speed of convergence. Two groups of data are used to make comparisons among the three algorithms, which suggest that the algorithm has overcome the problems of local optimum and low speed of convergence. The results show that it has a better clustering.


2018 ◽  
Vol 8 (4) ◽  
pp. 20-28
Author(s):  
Ruksana Akter ◽  
Yoojin Chung

This article presents a modified genetic algorithm for text document clustering on the cloud. Traditional approaches of genetic algorithms in document clustering represents chromosomes based on cluster centroids, and does not divide cluster centroids during crossover operations. This limits the possibility of the algorithm to introduce different variations to the population, leading it to be trapped in local minima. In this approach, a crossover point may be selected even at a position inside a cluster centroid, which allows modifying some cluster centroids. This also guides the algorithm to get rid of the local minima, and find better solutions than the traditional approaches. Moreover, instead of running only one genetic algorithm as done in the traditional approaches, this article partitions the population and runs a genetic algorithm on each of them. This gives an opportunity to simultaneously run different parts of the algorithm on different virtual machines in cloud environments. Experimental results also demonstrate that the accuracy of the proposed approach is at least 4% higher than the other approaches.


Author(s):  
Jasraj Meena ◽  
Manu Vardhan

Cloud computing is used to deliver IT resources over the internet. Due to the popularity of cloud computing, nowadays, most of the scientific workflows are shifted towards this environment. There are lots of algorithms has been proposed in the literature to schedule scientific workflows in the cloud, but their execution cost is very high as well as they are not meeting the user-defined deadline constraint. This paper focuses on satisfying the userdefined deadline of a scientific workflow while minimizing the total execution cost. So, to achieve this, we have proposed a Cost-Effective under Deadline (CEuD) constraint workflow scheduling algorithm. The proposed CEuD algorithm considers all the essential features of Cloud and resolves the major issues such as performance variation, and acquisition delay. We have compared the proposed CEuD algorithm with the existing literature algorithms for scientific workflows (i.e., Montage, Epigenomics, and CyberShake) and getting better results for minimizing the overall execution cost of the workflow while satisfying the user-defined deadline.


Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 169 ◽  
Author(s):  
Na Wu ◽  
Decheng Zuo ◽  
Zhan Zhang

Improving reliability is one of the major concerns of scientific workflow scheduling in clouds. The ever-growing computational complexity and data size of workflows present challenges to fault-tolerant workflow scheduling. Therefore, it is essential to design a cost-effective fault-tolerant scheduling approach for large-scale workflows. In this paper, we propose a dynamic fault-tolerant workflow scheduling (DFTWS) approach with hybrid spatial and temporal re-execution schemes. First, DFTWS calculates the time attributes of tasks and identifies the critical path of workflow in advance. Then, DFTWS assigns appropriate virtual machine (VM) for each task according to the task urgency and budget quota in the phase of initial resource allocation. Finally, DFTWS performs online scheduling, which makes real-time fault-tolerant decisions based on failure type and task criticality throughout workflow execution. The proposed algorithm is evaluated on real-world workflows. Furthermore, the factors that affect the performance of DFTWS are analyzed. The experimental results demonstrate that DFTWS achieves a trade-off between high reliability and low cost objectives in cloud computing environments.


Sign in / Sign up

Export Citation Format

Share Document