Linear Programming Approaches for Multiple-Class Discriminant and Classification Analysis

2010 ◽  
Vol 1 (1) ◽  
pp. 57-80 ◽  
Author(s):  
Minghe Sun

New linear programming approaches are proposed as nonparametric procedures for multiple-class discriminant and classification analysis. A new MSD model minimizing the sum of the classification errors is formulated to construct discriminant functions. This model has desirable properties because it is versatile and is immune to the pathologies of some of the earlier mathematical programming models for two-class classification. It is also purely systematic and algorithmic and no user ad hoc and trial judgment is required. Furthermore, it can be used as the basis to develop other models, such as a multiple-class support vector machine and a mixed integer programming model, for discrimination and classification. A MMD model minimizing the maximum of the classification errors, although with very limited use, is also studied. These models may also be considered as generalizations of mathematical programming formulations for two-class classification. By the same approach, other mathematical programming formulations for two-class classification can be easily generalized to multiple-class formulations. Results on standard as well as randomly generated test datasets show that the MSD model is very effective in generating powerful discriminant functions.

Author(s):  
Minghe Sun

New linear programming approaches are proposed as nonparametric procedures for multiple-class discriminant and classification analysis. A new MSD model minimizing the sum of the classification errors is formulated to construct discriminant functions. This model has desirable properties because it is versatile and is immune to the pathologies of some of the earlier mathematical programming models for two-class classification. It is also purely systematic and algorithmic and no user ad hoc and trial judgment is required. Furthermore, it can be used as the basis to develop other models, such as a multiple-class support vector machine and a mixed integer programming model, for discrimination and classification. A MMD model minimizing the maximum of the classification errors, although with very limited use, is also studied. These models may also be considered as generalizations of mathematical programming formulations for two-class classification. By the same approach, other mathematical programming formulations for two-class classification can be easily generalized to multiple-class formulations. Results on standard as well as randomly generated test datasets show that the MSD model is very effective in generating powerful discriminant functions.


Author(s):  
Minghe Sun

Mathematical programming models for discriminant and classification analysis are presented. Specifically, linear programming and mixed integer programming approaches are discussed. For each approach, two-class classification models and multi-class classification models are discussed. The emphasis is on the formulations of these mathematical programming models rather than on their performances. Two illustrative examples, one for two-class and the other for multi-class classification, are used to demonstrate the formulations of these mathematical programming models. An example is used to demonstrate the formulation after a mathematical programming model is presented.


2011 ◽  
Vol 10 (04) ◽  
pp. 589-612 ◽  
Author(s):  
MINGHE SUN

A mixed integer programming model is proposed for multiple-class discriminant and classification analysis. When multiple discriminant functions, one for each class, are constructed with the mixed integer programming model, the number of misclassified observations in the sample is minimized. This model is an extension of the linear programming models for multiple-class discriminant analysis but may be considered as a generalization of mixed integer programming formulations for two-class classification analysis. Properties of the model are studied. The model is immune from any difficulties of many mathematical programming formulations for two-class classification analysis, such as nonexistence of optimal solutions, improper solutions, and instability under linear data transformation. In addition, meaningful discriminant functions can be generated under conditions where other techniques fail. Examples are provided. Results on publically accessible datasets show that this model is very effective in generating powerful discriminant functions.


Sign in / Sign up

Export Citation Format

Share Document