Congestion Management Using Hybrid Particle Swarm Optimization Technique

2010 ◽  
Vol 1 (3) ◽  
pp. 51-66 ◽  
Author(s):  
Sujatha Balaraman ◽  
N. Kamaraj

This paper proposes the Hybrid Particle Swarm Optimization (HPSO) method for solving congestion management problems in a pool based electricity market. Congestion may occur due to lack of coordination between generation and transmission utilities or as a result of unexpected contingencies. In the proposed method, the control strategies to limit line loading to the security limits are by means of minimum adjustments in generations from the initial market clearing values. Embedding Evolutionary Programming (EP) technique in Particle Swarm Optimization (PSO) algorithm improves the global searching capability of PSO and also prevents the premature convergence in local minima. A number of functional operating constraints, such as branch flow limits and load bus voltage magnitude limits are included as penalties in the fitness function. Numerical results on three test systems namely modified IEEE 14 Bus, IEEE 30 Bus and IEEE 118 Bus systems are presented and the results are compared with PSO and EP approaches in order to demonstrate its performance.

2012 ◽  
pp. 710-725
Author(s):  
Sujatha Balaraman ◽  
N. Kamaraj

This paper proposes the Hybrid Particle Swarm Optimization (HPSO) method for solving congestion management problems in a pool based electricity market. Congestion may occur due to lack of coordination between generation and transmission utilities or as a result of unexpected contingencies. In the proposed method, the control strategies to limit line loading to the security limits are by means of minimum adjustments in generations from the initial market clearing values. Embedding Evolutionary Programming (EP) technique in Particle Swarm Optimization (PSO) algorithm improves the global searching capability of PSO and also prevents the premature convergence in local minima. A number of functional operating constraints, such as branch flow limits and load bus voltage magnitude limits are included as penalties in the fitness function. Numerical results on three test systems namely modified IEEE 14 Bus, IEEE 30 Bus and IEEE 118 Bus systems are presented and the results are compared with PSO and EP approaches in order to demonstrate its performance.


Author(s):  
Sujatha Balaraman ◽  
N. Kamaraj

This paper proposes the Hybrid Particle Swarm Optimization (HPSO) method for solving congestion management problems in a pool based electricity market. Congestion may occur due to lack of coordination between generation and transmission utilities or as a result of unexpected contingencies. In the proposed method, the control strategies to limit line loading to the security limits are by means of minimum adjustments in generations from the initial market clearing values. Embedding Evolutionary Programming (EP) technique in Particle Swarm Optimization (PSO) algorithm improves the global searching capability of PSO and also prevents the premature convergence in local minima. A number of functional operating constraints, such as branch flow limits and load bus voltage magnitude limits are included as penalties in the fitness function. Numerical results on three test systems namely modified IEEE 14 Bus, IEEE 30 Bus and IEEE 118 Bus systems are presented and the results are compared with PSO and EP approaches in order to demonstrate its performance.


2013 ◽  
Vol 303-306 ◽  
pp. 1888-1891
Author(s):  
Yi Zhang ◽  
Ke Wen Xia ◽  
Gen Gu

In order to solve the problems in the optimization of filter parameters, such as large amounts of calculation and the complicated mathematical hypotheses, an approach to optimize filter parameters is presented based on the Hybrid Particle swarm optimization (HPSO) algorithm, which includes the establishing of filter model, setting up the fitness-function and optimizing filter parameters by HPSO algorithm. The application example shows that the optimization method improves the design accuracy and saves calculation, and HPSO algorithm is superior to PSO algorithm in optimization of filter parameters.


2011 ◽  
Vol 48-49 ◽  
pp. 274-279
Author(s):  
Xiao Hua Wang ◽  
Yong Mei Zhang

On the premise of ensuring safety and reliability in electricity market environment, the goal of State Grid Corporation is that purchase AGC ancillary service charges of reducing cost. This paper first takes total expense from many AGC units as an objective function, , which synthetically considers total regulation MW amount and total regulation speed constraints. A novel hybrid particle swarm optimization (PSO) algorithm is applied to solve the problem. Numerical simulation results show that the improved PSO algorithm has advantages both in the calculation accuracy and the convergence speed. Therefore, it is concluded that the algorithm is supposed to be an effective way to deal with the optimized issue in the power market.


Sign in / Sign up

Export Citation Format

Share Document