Study on Lifecycle and Criteria of Software Engineering

2013 ◽  
Vol 303-306 ◽  
pp. 2341-2344
Author(s):  
Huai Yong Deng

Traditional software engineering is complex and scalable. The research goal of this paper is to contribute to software engineering discipline via engineering perspective, engineering fundamental principles are studied through the identification of software engineering fundamental principles and the description of operational guidelines. This research also researches the software development lifecycle and the criteria and specifications of software engineering from an engineering perspective.

Author(s):  
Shola Oyedeji ◽  
Birgit Penzenstadler ◽  
Ahmed Seffah

Like other ICT communities, sustainability in software engineering is a major research and development concerns. Current research focusses on eliciting the meanings of sustainability and proposing approaches for its engineering and integration into the mainstream software development lifecycle. However, few concrete guidelines that software designers can apply effectively are available and applicable. Such guidelines are needed for the elicitation of sustainability requirements and testing software against these guidelines. This paper introduces a sustainability design catalogue to assist software developers and managers in eliciting sustainability requirements, and then in measuring and testing software sustainability. The paper reviews the current research on sustainability in software engineering which is the grounds for the development of the catalogue. Four different case studies were analyzed using the Karlskrona manifesto on sustainability design. The output from this research paper is a software sustainability design catalogue through which a pilot framework is proposed that includes a set of sustainability goals, concepts and methods. The integration of sustainability for/in software systems requires a concrete framework that exemplifies how to apply and quantify sustainability. The paper demonstrates how the proposed software sustainability design catalogue provides a step towards this direction through a series of guidelines.


2020 ◽  
Author(s):  
CRS Kumar

In the game of Golf, a player is challenged to take the minimum strokes to complete a round of 18 holes under varying playing conditions. Players use different clubs depending on their skill levels to achieve the desired distance while taking shots at the golf ball from the start (tee off) to the hole (pin). Unlike other games which have a standardized playing area, the terrain in a golf course comprises of various natural and manmade features viz. fairways, bunkers, trees, water bodies etc, which increase the difficulty level of the game and keep the players challenged.The game of golf has a fascinating similarity to a software development life cycle. If the holes on a golf course are considered akin to milestones in a development project then most of the Software Engineering models focus on software development in groups. Thus, we propose SOLF i.e Software Development Lifecycle model based on Golf, as a SDLC ideal for individuals or a small group of 2-3 developers. The proposed model is easy to comprehend, flexible and optimally adjustable in a dynamic environment.SOLF divides the project into 18 stages wherein each stage of the project will have 3 to 6 tasks which are required to be completed within a fixed timeline. The stages are managed by creating checklists at the start akin to the pre-shot routines in golf and the customer feedback is received on reaching each of the milestones similar to applause in the game of golf. Terrain of the golf course is reflected as risk list which are varying for each of the stages.SOLF achieves 10x speedup in software development and research projects as it creates an environment of challenges and drives the developer towards self excellence. It also inculcates a spirit of competition and sportsmanship by challenging the developers on various 'terrains' of development.


2021 ◽  
Author(s):  
Mayank Gokarna

DevOps is the combination of cultural mindset, practices, and tools that increases a team's ability to release applications and services at high velocity. The development and operations teams always have a conflict around the scope of responsibility. With these differences the quality and speed of delivery across software Development Life Cycle is negatively impacted. DevOps is about removing the barriers between two traditionally delimited teams, development and operations. With DevOps, these two teams work together to optimize both the productivity of developers and the reliability of operations. They strive to communicate frequently, increase efficiencies, and improve the quality of services they provide. They take full ownership for their services, often beyond where their stated roles or titles have traditionally been scoped. Transitioning to DevOps requires a change in culture and mindset first. It is quite difficult to persuade a whole company to change its culture at once. This paper aims to bring different phases of software development lifecycle into DevOps implementation strategy and presents a comprehensive collection of leading tools used across Software Development life Cycle to automate and integrate different stages of software delivery. This paper also highlights on DevOps practices which span across different phases of the Software Development Lifecycle and how those can be implemented with different tools available.


2014 ◽  
pp. 999-1013
Author(s):  
Alessandra Bagnato ◽  
Fabio Raiteri ◽  
Christian Jung ◽  
Frank Elberzhager

Security inspections are increasingly important for bringing security-relevant aspects into software systems, particularly during the early stages of development. Nowadays, such inspections often do not focus specifically on security. With regard to security, the well-known and approved benefits of inspections are not exploited to their full potential. This book chapter focuses on the Security Goal Indicator Tree application for eliminating existing shortcomings, the training that led to their creation in an industrial project environment, their usage, and their reuse by a team in industry. SGITs are a new approach for modeling and checking security-relevant aspects throughout the entire software development lifecycle. This book chapter describes the modeling of such security goal based trees as part of requirements engineering using the GOAT tool dedicated plug-in and the retrieval of these models during the various phases of the software development lifecycle in a project by means of Software Vulnerability Repository Services (SVRS) created in the European project SHIELDS (SHIELDS - Detecting known security vulnerabilities from within design and development tools).


Sign in / Sign up

Export Citation Format

Share Document