software engineering
Recently Published Documents


TOTAL DOCUMENTS

14141
(FIVE YEARS 2173)

H-INDEX

99
(FIVE YEARS 10)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-21
Author(s):  
Wouter Groeneveld ◽  
Joost Vennekens ◽  
Kris Aerts

As the importance of non-technical skills in the software engineering industry increases, the skill sets of graduates match less and less with industry expectations. A growing body of research exists that attempts to identify this skill gap. However, only few so far explicitly compare opinions of the industry with what is currently being taught in academia. By aggregating data from three previous works, we identify the three biggest non-technical skill gaps between industry and academia for the field of software engineering: devoting oneself to continuous learning , being creative by approaching a problem from different angles , and thinking in a solution-oriented way by favoring outcome over ego . Eight follow-up interviews were conducted to further explore how the industry perceives these skill gaps, yielding 26 sub-themes grouped into six bigger themes: stimulating continuous learning , stimulating creativity , creative techniques , addressing the gap in education , skill requirements in industry , and the industry selection process . With this work, we hope to inspire educators to give the necessary attention to the uncovered skills, further mitigating the gap between the industry and the academic world.


2022 ◽  
Vol 54 (9) ◽  
pp. 1-40
Author(s):  
Chao Liu ◽  
Xin Xia ◽  
David Lo ◽  
Cuiyun Gao ◽  
Xiaohu Yang ◽  
...  

Code search is a core software engineering task. Effective code search tools can help developers substantially improve their software development efficiency and effectiveness. In recent years, many code search studies have leveraged different techniques, such as deep learning and information retrieval approaches, to retrieve expected code from a large-scale codebase. However, there is a lack of a comprehensive comparative summary of existing code search approaches. To understand the research trends in existing code search studies, we systematically reviewed 81 relevant studies. We investigated the publication trends of code search studies, analyzed key components, such as codebase, query, and modeling technique used to build code search tools, and classified existing tools into focusing on supporting seven different search tasks. Based on our findings, we identified a set of outstanding challenges in existing studies and a research roadmap for future code search research.


2022 ◽  
Vol 31 (1) ◽  
pp. 1-36
Author(s):  
Daniel Graziotin ◽  
Per Lenberg ◽  
Robert Feldt ◽  
Stefan Wagner

A meaningful and deep understanding of the human aspects of software engineering (SE) requires psychological constructs to be considered. Psychology theory can facilitate the systematic and sound development as well as the adoption of instruments (e.g., psychological tests, questionnaires) to assess these constructs. In particular, to ensure high quality, the psychometric properties of instruments need evaluation. In this article, we provide an introduction to psychometric theory for the evaluation of measurement instruments for SE researchers. We present guidelines that enable using existing instruments and developing new ones adequately. We conducted a comprehensive review of the psychology literature framed by the Standards for Educational and Psychological Testing. We detail activities used when operationalizing new psychological constructs, such as item pooling, item review, pilot testing, item analysis, factor analysis, statistical property of items, reliability, validity, and fairness in testing and test bias. We provide an openly available example of a psychometric evaluation based on our guideline. We hope to encourage a culture change in SE research towards the adoption of established methods from psychology. To improve the quality of behavioral research in SE, studies focusing on introducing, validating, and then using psychometric instruments need to be more common.


2022 ◽  
Vol 31 (1) ◽  
pp. 1-49
Author(s):  
Anders Sundelin ◽  
Javier Gonzalez-huerta ◽  
Krzysztof Wnuk ◽  
Tony Gorschek

Context: The concept of software craftsmanship has early roots in computing, and in 2009, the Manifesto for Software Craftsmanship was formulated as a reaction to how the Agile methods were practiced and taught. But software craftsmanship has seldom been studied from a software engineering perspective. Objective: The objective of this article is to systematize an anatomy of software craftsmanship through literature studies and a longitudinal case study. Method: We performed a snowballing literature review based on an initial set of nine papers, resulting in 18 papers and 11 books. We also performed a case study following seven years of software development of a product for the financial market, eliciting qualitative, and quantitative results. We used thematic coding to synthesize the results into categories. Results: The resulting anatomy is centered around four themes, containing 17 principles and 47 hierarchical practices connected to the principles. We present the identified practices based on the experiences gathered from the case study, triangulating with the literature results. Conclusion: We provide our systematically derived anatomy of software craftsmanship with the goal of inspiring more research into the principles and practices of software craftsmanship and how these relate to other principles within software engineering in general.


2022 ◽  
Vol 31 (1) ◽  
pp. 1-46
Author(s):  
Chao Liu ◽  
Cuiyun Gao ◽  
Xin Xia ◽  
David Lo ◽  
John Grundy ◽  
...  

Context: Deep learning (DL) techniques have gained significant popularity among software engineering (SE) researchers in recent years. This is because they can often solve many SE challenges without enormous manual feature engineering effort and complex domain knowledge. Objective: Although many DL studies have reported substantial advantages over other state-of-the-art models on effectiveness, they often ignore two factors: (1) reproducibility —whether the reported experimental results can be obtained by other researchers using authors’ artifacts (i.e., source code and datasets) with the same experimental setup; and (2) replicability —whether the reported experimental result can be obtained by other researchers using their re-implemented artifacts with a different experimental setup. We observed that DL studies commonly overlook these two factors and declare them as minor threats or leave them for future work. This is mainly due to high model complexity with many manually set parameters and the time-consuming optimization process, unlike classical supervised machine learning (ML) methods (e.g., random forest). This study aims to investigate the urgency and importance of reproducibility and replicability for DL studies on SE tasks. Method: In this study, we conducted a literature review on 147 DL studies recently published in 20 SE venues and 20 AI (Artificial Intelligence) venues to investigate these issues. We also re-ran four representative DL models in SE to investigate important factors that may strongly affect the reproducibility and replicability of a study. Results: Our statistics show the urgency of investigating these two factors in SE, where only 10.2% of the studies investigate any research question to show that their models can address at least one issue of replicability and/or reproducibility. More than 62.6% of the studies do not even share high-quality source code or complete data to support the reproducibility of their complex models. Meanwhile, our experimental results show the importance of reproducibility and replicability, where the reported performance of a DL model could not be reproduced for an unstable optimization process. Replicability could be substantially compromised if the model training is not convergent, or if performance is sensitive to the size of vocabulary and testing data. Conclusion: It is urgent for the SE community to provide a long-lasting link to a high-quality reproduction package, enhance DL-based solution stability and convergence, and avoid performance sensitivity on different sampled data.


Author(s):  
Boris Kontsevoi ◽  

The paper examines the principles of the Predictive Software Engineering (PSE) framework. The authors examine how PSE enables custom software development companies to offer transparent services and products while staying within the intended budget and a guaranteed budget. The paper will cover all 7 principles of PSE: (1) Meaningful Customer Care, (2) Transparent End-to-End Control, (3) Proven Productivity, (4) Efficient Distributed Teams, (5) Disciplined Agile Delivery Process, (6) Measurable Quality Management and Technical Debt Reduction, and (7) Sound Human Development.


Software ◽  
2022 ◽  
Vol 1 (1) ◽  
pp. 1-2
Author(s):  
Pekka Abrahamsson ◽  
Tommi Mikkonen

Software (ISSN: 2674-113X) [...]


2022 ◽  
Vol 8 ◽  
pp. e839
Author(s):  
Adeeb Noor

Background Bioinformatics software is developed for collecting, analyzing, integrating, and interpreting life science datasets that are often enormous. Bioinformatics engineers often lack the software engineering skills necessary for developing robust, maintainable, reusable software. This study presents review and discussion of the findings and efforts made to improve the quality of bioinformatics software. Methodology A systematic review was conducted of related literature that identifies core software engineering concepts for improving bioinformatics software development: requirements gathering, documentation, testing, and integration. The findings are presented with the aim of illuminating trends within the research that could lead to viable solutions to the struggles faced by bioinformatics engineers when developing scientific software. Results The findings suggest that bioinformatics engineers could significantly benefit from the incorporation of software engineering principles into their development efforts. This leads to suggestion of both cultural changes within bioinformatics research communities as well as adoption of software engineering disciplines into the formal education of bioinformatics engineers. Open management of scientific bioinformatics development projects can result in improved software quality through collaboration amongst both bioinformatics engineers and software engineers. Conclusions While strides have been made both in identification and solution of issues of particular import to bioinformatics software development, there is still room for improvement in terms of shifts in both the formal education of bioinformatics engineers as well as the culture and approaches of managing scientific bioinformatics research and development efforts.


2022 ◽  
Vol 27 (2) ◽  
Author(s):  
Elizabeth Bjarnason ◽  
Baldvin Gislason Bern ◽  
Linda Svedberg

AbstractLarge-scale software engineering is a collaborative effort where teams need to communicate to develop software products. Managers face the challenge of how to organise work to facilitate necessary communication between teams and individuals. This includes a range of decisions from distributing work over teams located in multiple buildings and sites, through work processes and tools for coordinating work, to softer issues including ensuring well-functioning teams. In this case study, we focus on inter-team communication by considering geographical, cognitive and psychological distances between teams, and factors and strategies that can affect this communication. Data was collected for ten test teams within a large development organisation, in two main phases: (1) measuring cognitive and psychological distance between teams using interactive posters, and (2) five focus group sessions where the obtained distance measurements were discussed. We present ten factors and five strategies, and how these relate to inter-team communication. We see three types of arenas that facilitate inter-team communication, namely physical, virtual and organisational arenas. Our findings can support managers in assessing and improving communication within large development organisations. In addition, the findings can provide insights into factors that may explain the challenges of scaling development organisations, in particular agile organisations that place a large emphasis on direct communication over written documentation.


Author(s):  
Wangai Mambo

Study examined AI and SE transdisciplinarity to find ways of aligning them to enable development of AI-SE transdisciplinary theory. Literature review and analysis method was used. The findings are AI and SE transdisciplinarity is tacit with islands within and between them that can be linked to accelerate their transdisciplinary orientation by codification, internally developing and externally borrowing and adapting transdisciplinary theories. Lack of theory has been identified as the major barrier toward towards maturing the two disciplines as engineering disciplines. Creating AI and SE transdisciplinary theory would contribute to maturing AI and SE engineering disciplines.  Implications of study are transdisciplinary theory can support mode 2 and 3 AI and SE innovations; provide an alternative for maturing two disciplines as engineering disciplines. Study’s originality it’s first in SE, AI or their intersections.


Sign in / Sign up

Export Citation Format

Share Document