Transient Analysis of Multi-Conductor Transmission Line Based on the Second-Order Upwind Scheme

2014 ◽  
Vol 543-547 ◽  
pp. 821-824
Author(s):  
Yin Han Gao ◽  
Jun Dong Zhang ◽  
Kai Yu Yang ◽  
Tian Hao Wang ◽  
Yu Zhu ◽  
...  

On the basis of the second-order upwind scheme, combined with the flux splitting method, we derive a uniform multi-conductor transmission line time-domain calculations. This method is a direct time-domain discrete numerical method with second order accuracy. It does not have any special requirements for circuit and the application process and complex transformations which lead to facilitate the preparation of the program. Numerical experiments show that this method of preparation of general purpose computing program has roughly the same computational efficiency with the traditional leapfrog scheme and at the discontinuous solutions, there are no non-physical oscillations. It can easily be used to calculate a uniform multi-conductor transmission line coupling.

2014 ◽  
Vol 543-547 ◽  
pp. 813-816
Author(s):  
Yin Han Gao ◽  
Tian Hao Wang ◽  
Jun Dong Zhang ◽  
Kai Yu Yang ◽  
Yu Zhu

This article will combine the difference scheme of first-order upwind with the multi-conductor transmission lines equation to analysis the multi-conductor transmission lines crosstalk in the time domain. First-order upwind is a finite difference algorithm in the time domain; it has a first order accuracy, in the discontinuous solution there is no non-physics-oscillation, when simulate the signal. The flux splitting method which is applied to the first-order upwind solved the problem that the characteristic line direction of the wind type make plus or minus transformation along with the coefficient, make the programming simple. In this paper, simulation results of transmission line crosstalk in this algorithm will be compared with the traditional leapfrog scheme, to verify its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document