Design of Satellite Attitude Control System Considering the Interaction between Fuel Slosh and Flexible Dynamics during the System Parameters Estimation

2014 ◽  
Vol 706 ◽  
pp. 14-24 ◽  
Author(s):  
Alain G. de Souza ◽  
Luiz C.G. de Souza

The design of the satellite Attitude Control System (ACS) becomes more complex when the satellite structure has different type of components like, flexible solar panels, antennas, mechanical manipulators and tanks with fuel, since the ACS performance and robustness will depend if the dynamics interaction effects between these components are considered in the satellite controller design. A crucial interaction can occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational maneuver since these interactions can change the satellite center of mass position damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances affecting thus the satellite attitude acquisition. It is known that one way to minimize such problems is to design controllers with a bandwidth below the lowest slosh and/orvibration mode which can result in slow maneuvers inconsistent with the space mission requirements. As a result, the design of the satellite controller needs to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of the interaction between the liquid motion (slosh) and the flexible satellite dynamics in order to predict what the damage to the controller performance and robustness is. The fuel slosh dynamics is modeled using its pendulum analogs mechanical system which parameters are identified using the Kalman filter technique. This information is used to designs and to compare the satellite attitude control system by the Linear Quadratic Regulator (LQR) and the Linear Quadratic Gaussian (LQG methods. Besides, one investigates the effects of the rod length estimation in the plant of the system stability. This investigation has shown that the poles of the plant to walk to and from the imaginary axis, leaving in the end the plant more stable.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Luiz Carlos Gadelha de Souza ◽  
Alain G. de Souza

The design of the satellite attitude control system (ACS) becomes more complex when the satellite structure has different type of components like, flexible solar panels, antennas, mechanical manipulators, and tanks with fuel. A crucial interaction can occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational manoeuvre since these interactions can change the satellite centre of mass position damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. As a result, the design of the satellite controller needs to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of the interaction between the liquid motion (slosh) and the satellite dynamics in order to predict what the damage to the controller performance and robustness is. The fuel slosh dynamics is modelled by a pendulum which parameters are identified using the Kalman filter technique. This information is used to design the satellite controller by the linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) methods to perform a planar manoeuvre assuming thrusters are actuators.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Alain G. de Souza ◽  
Luiz C. G. de Souza

The design of the spacecraft Attitude Control System (ACS) becomes more complex when the spacecraft has different type of components like, flexible solar panels, antennas, mechanical manipulators and tanks with fuel. The interaction between the fuel slosh motion, the panel’s flexible motion and the satellite rigid motion during translational and/or rotational manoeuvre can change the spacecraft center of mass position damaging the ACS pointing accuracy. This type of problem can be considered as a Fluid-Structure Interaction (FSI) where some movable or deformable structure interacts with an internal fluid. This paper develops a mathematical model for a rigid-flexible satellite with tank with fuel. The slosh dynamics is modelled using a common pendulum model and it is considered to be unactuated. The control inputs are defined by a transverse body fixed force and a moment about the centre of mass. A comparative investigation designing the satellite ACS by the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) methods is done. One has obtained a significant improvement in the satellite ACS performance and robustness of what has been done previously, since it controls the rigid-flexible satellite and the fuel slosh motion, simultaneously.


2008 ◽  
Vol 15 (3-4) ◽  
pp. 395-402 ◽  
Author(s):  
G.T. Conti ◽  
L.C.G. Souza

Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS) with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS), using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.


Sign in / Sign up

Export Citation Format

Share Document