attitude control system
Recently Published Documents


TOTAL DOCUMENTS

821
(FIVE YEARS 126)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Peichao Mi ◽  
Qingxian Wu ◽  
Yuhui Wang

Abstract This paper considers a nonlinear suboptimal control problem for a near-space hypersonic vehicle's (NSHV's) attitude dynamics. The least-square and stable manifold methods first solve an unconstrained approximately optimal control law corresponding to the nonlinear attitude model. Then, to further meet the dynamic performance requirement of the attitude control system, a novel strategy based on the Koopman operator, symplectic geometric theory, and the stable manifold theorem is proposed to approximate the eigenvalues of the closed-loop nonlinear unconstrained approximated optimal control system. The weight matrices in the optimal performance index, which directly determine the output responses of the nonlinear attitude dynamics, can be appropriately designed according to the eigenvalues. The final control law considers the actuator constraints. The NSHV's closed-loop attitude control system is proved to be locally exponentially stable, and the suboptimality of the control law is analyzed. Numerical simulation demonstrates the effectiveness of the proposed scheme.


2022 ◽  
Author(s):  
Nathaniel R. Demmons ◽  
Zackary D. Wood ◽  
Arega Margousian ◽  
Jacob Knott ◽  
Tim Fedkiw

2022 ◽  
Vol 1215 (1) ◽  
pp. 012008
Author(s):  
I. A. Lomaka

Abstract The paper presents the formation of additional feedback in the loop of the attitude control system of a nanosatellite. Feedback is based on the assessment of the inertial characteristics of the nanosatellite. The influence of the accuracy of knowledge of the inertial characteristics of a nanosatellite on the formation of an optimal control law in the problem of reorientation was estimated. Statistical modelling has been carried out to assess the effectiveness of nanosatellite on-board sensors in the problem of identifying the inertial characteristics of a nanosatellite. Recommendations for the selection of sensor’s characteristics and time interval of data collection have been formulated.


2021 ◽  
Vol 11 (23) ◽  
pp. 11563
Author(s):  
Yan-Feng Li ◽  
Ming Huang ◽  
Song Bai ◽  
Yuan Chen ◽  
Hong-Zhong Huang

The momentum wheel is a key component of the satellite attitude control system and has a direct impact on the reliability and overall life of the satellite. The momentum wheel has the characteristics of a high reliability, long life, and complex failure mechanics, which leads to expensive maintenance and a low reliability of the test sample. Therefore, it is challenge to implement an accelerated life test. The traditional life data statistical method has great difficulty in solving the reliability analysis of the momentum wheel. A reliability calculation method based on copula function for multi-degradation is proposed. Firstly, the key factors affecting the reliability of the momentum wheel are analyzed, and the lubricant residual quantity and current are selected as the degradation quantity. Secondly, the wiener process is used to model the degradation of a single degradation quantity, and the edge distribution function of the momentum wheel reliability is obtained. Considering that the correlation between multiple degradation quantities has a non-negligible influence on the reliability analysis result, the copula function is introduced to describe the correlation, and the edge distributions are fused to obtain the joint distribution function of the momentum wheel reliability.


2021 ◽  
pp. 107298
Author(s):  
Lorenzzo Quevedo Mantovani ◽  
Willer Gomes dos Santos ◽  
Flávio Luiz Cardoso-Ribeiro ◽  
Luis Eduardo Vergueiro Loures da Costa

2021 ◽  
Author(s):  
Peichao Mi ◽  
Qingxian Wu ◽  
Yuhui Wang

Abstract This paper considers a nonlinear suboptimal control problem for a near-space hypersonic vehicle's (NSHV's) attitude dynamics. The least-square and stable manifold methods first solve an unconstrained approximately optimal control law corresponding to the nonlinear attitude model. Then, to further meet the dynamic performance requirement of the attitude control system, a novel strategy based on the Koopman operator, symplectic geometric theory, and the stable manifold theorem is proposed to approximate the eigenvalues of the closed-loop nonlinear unconstrained approximated optimal control system. The weight matrices in the optimal performance index, which directly determine the output responses of the nonlinear attitude dynamics, can be appropriately designed according to the eigenvalues. The final control law considers the actuator constraints. The NSHV's closed-loop attitude control system is proved to be locally exponentially stable, and the suboptimality of the control law is analyzed. Numerical simulation demonstrates the effectiveness of the proposed scheme.


Author(s):  
Emily L Wilson ◽  
Vincent J. Riot ◽  
A. J. DiGregorio ◽  
guruthisvaran Ramu ◽  
Paul Cleveland ◽  
...  

Abstract We present the final design, environmental testing, and launch history of MiniCarb, a 6U CubeSat developed through a partnership between NASA Goddard Space Flight Center and Lawrence Livermore National Laboratory. MiniCarb’s science payload, developed at Goddard, was an occultation-viewing, passive laser heterodyne radiometer for observing methane, carbon dioxide, and water vapor in Earth’s atmosphere at ~1.6 microns. MiniCarb’s satellite, developed at Livermore, implemented their CubeSat Next Generation Bus plug-and-play architecture to produce a modular platform that could be tailored to a range of science payloads. Following the launch on December 5, 2019, MiniCarb traveled to the International Space Station and was set into orbit on February 1, 2020 via Northrop Grumman’s (NG) Cygnus capsule which deployed MiniCarb with tipoff rotation of about 20 deg/sec (significantly higher than the typical rate of 3 deg/sec from prior CubeSats), from which the attitude control system was unable to recover resulting in a loss of power. In spite of this early failure, MiniCarb had many successes including rigorous environmental testing, successful deployment of its solar panels, and a successful test of the radio and communication through the Iridium network. This prior work and enticing cost (approximately $2M for the satellite and $250K for the payload) makes MiniCarb an ideal candidate for a low-cost and rapid rebuild as a single orbiter or constellation to globally observe key greenhouse gases.


2021 ◽  
pp. 1661-1672
Author(s):  
Guorong Zhao ◽  
Yunfeng He ◽  
Yuanxin Wang ◽  
Shuai Liu ◽  
Chaolun Zhao

Sign in / Sign up

Export Citation Format

Share Document