Residual Stresses of Friction Stir Welded 2024-T4 Joints

2008 ◽  
Vol 580-582 ◽  
pp. 263-266 ◽  
Author(s):  
Ting Li ◽  
Qing Yu Shi ◽  
Hong Ke Li ◽  
Wei Wang ◽  
Zhi Peng Cai

Friction stir welding (FSW) is a solid-state joining technique which can produce high-quality joints efficiently. The residual stresses in FSW are generated due to the effect of both the uneven temperature field and of the tool force, which is different from that in fusion welding. In this study the residual stresses of 3mm-thick 2024-T4 aluminum alloy FSW joints have been investigated by using the Hole-drilling method. To reduce the influence of drilling upon the experimental results, annealed stress-free 2024 aluminum alloy plates were drilled; the relieved strains were measured and were subtracted from the total strains measured from the joints. The results showed that the longitudinal residual stresses in the joint were much larger than the transverse residual stresses; high longitudinal tensile residual stresses were concentrated near the tool shoulder direct affected zone and asymmetrically distributed at the different sides of the weld line; i-e, high at the advancing side and relatively low at the retreating side. Outside the tool shoulder direct affected zone, the longitudinal residual stresses decreased rapidly and became compressive residual stresses away from the weld line; the peak of the longitudinal residual stresses was 164.5MPa.The mechanism of the generation of the residual stresses was analyzed preliminarily.

2014 ◽  
Vol 996 ◽  
pp. 445-450 ◽  
Author(s):  
Wulf Pfeiffer ◽  
Eduard Reisacher ◽  
Michael Windisch ◽  
Markus Kahnert

Friction stir welding (FSW) is a well-known technique which allows joining of metal parts without severe distortion. Because FSW involves less heat input relative to conventional welding, it may be assumed that cutting specimens from larger friction stir welded components results in a negligible redistribution of residual stresses. The aim of the investigations was to verify these assumptions for a welded aluminum plate and a circumferentially-welded aluminum cylinder. Strain gage measurements, X-ray diffraction and the incremental hole drilling method were used.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Hamid Jahed ◽  
Mohammad Reza Faritus ◽  
Zeinab Jahed

Relieved strains due to drilling hole in a ring sample cut from an autofrettage cylinder are measured. Measured strains are then transformed to residual stresses using calibration constants and mathematical relations of elasticity based on ASTM standard recommendations (American Society for Testing and Materials, ASTM E 837-08, 2008, “Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method,” American Society for Testing and Materials). The hydraulic autofrettage is pressurizing a closed-end long cylinder beyond its elastic limits and subsequently removing the pressure. In contrast to three-dimensional stress state in the autofrettage tube, the stress measurement in hole drilling method is performed on a traction free surface formed from cutting the ring sample. The process of cutting the ring sample from a long autofrettaged tube is simulated using finite element method (FEM) and the redistribution of the residual stress due to the cut is discussed. Hence, transformation of the hole drilling measurements on the ring slice to the autofrettage residual stresses is revealed. The residual stresses are also predicted by variable material properties (VMP) method (Jahed, H., and Dubey, R. N., 1997, “An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field,” Trans. ASME J. Pressure Vessel Technol., 119, pp. 264–273) using real loading and unloading behavior of the test material. Prediction results for residual hoop stress agree very well with the measurements. However, radial stress predictions are less than measured values particularly in the middle of the ring. To remove the discrepancy in radial residual stresses, the measured residual hoop stress that shows a self-balanced distribution was taken as the basis for calculating residual radial stresses using field equations of elasticity. The obtained residual stresses were improved a lot and were in good agreement with the VMP solution.


Sign in / Sign up

Export Citation Format

Share Document