Tool Path Planning for Five-Axis NC Machining of Implant Shaping Mold for Cranioplasty

2011 ◽  
Vol 697-698 ◽  
pp. 292-296
Author(s):  
Liang Zhang ◽  
J. Li ◽  
B.C. Lou

The necessity for skull patch surface for cranioplasty was introduced and it was divided according to maximum normal curvature in the discrete points after skull patch surface dispersed. Then the tool axis vector was determined by the lead angle of the tool, corresponding to generating the tool path in each area; At last, the implant shaping mold for cranioplasty was produced by five-axis NC machine.

2021 ◽  
Author(s):  
J.Y. Feng ◽  
Z.C. Wei ◽  
M.J. Wang ◽  
X.Q. Wang ◽  
M.L. Guo

Abstract U-pass milling is a roughing method that combines the characteristics of flank milling with conventional trochoidal milling. The tool cuts in and out steadily, and the tool–workpiece wrap angle is maintained within a small range. This method can smooth the cutting force and reduce the peak cutting force while avoiding cutting heat accumulation, which can significantly improve the processing efficiency and reduce tool wear. In this study, a tool path model is established for U-pass milling, and the characteristic parameters of the path are defined. Through a comparative test of three-axis groove milling, it is demonstrated that the peak value and average value of the cutting force are reduced by 25% and 60%, respectively. An impeller runner is considered as the processing object, and the milling boundary parameters are pretreated. A tiling micro-arc mapping algorithm is proposed, which maps the three-dimensional boundary to the two-dimensional parameter domain plane with the arc length as the coordinate axis, and the dimensionally reduced tool contact point distribution form is obtained. The geometric domain tool position point and the interference-free tool axis vector are obtained by calculating the bidirectional proportional domain of the runner and the inverse mapping of any vector in the parameter domain. Finally, the calculation results are nested into the automatically programmed tool (APT) encoding form, and the feasibility of the five-axis U-pass milling tool path planning method is verified through a numerical example.


2012 ◽  
Vol 723 ◽  
pp. 153-158 ◽  
Author(s):  
Jiu Chao Huang ◽  
Xian Li Liu ◽  
Cai Xu Yue ◽  
Yao Nan Cheng ◽  
Hui Zhang

To solve the difficult problem of NC machining of closed blisk, the paper combines with the structure characteristics of processing surface and the characteristics of Channel processing, and at the same time to study the technology of processing impeller channel tool path planning. By planning different processing methods of tool axis control for different processing parts, take outer arc processing as an example, tool path planning method is analyzed. By the method to generate the ruled envelope surfaces in view of blade offset surfaces, to put forward new methods of dividing plunging region. The method of surface offset was applied to determine the safety space of tool axis movement. To determine the range of tool axis angle by the relationship between the boundary curves and division the processing area by the tangent method. Finally, The results of tool path planning were verified by using five-axis processing, which proved the reasonability and feasibility of the scheme.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 237
Author(s):  
Yue Liu ◽  
Zhanqiang Liu ◽  
Wentong Cai ◽  
Yukui Cai ◽  
Bing Wang ◽  
...  

Aero-engine blades are manufactured by electroforming process with electrodes. The blade electrode is usually machined with five-axis micromilling to get required profile roughness. Tool path planning parameters, such as cutting step and tool tilt angle, have a significant effect on the profile roughness of the micro-fillet of blade electrode. In this paper, the scallop height model of blade electrode micro-fillet processed by ball-end milling cutter was proposed. Effects of cutting step and tool tilt angle the machined micro-fillet profile roughness were predicted with the proposed scallop height model. The cutting step and tool tilt angle were then optimised to ensure the contour precision of the micro-fillet shape requirement. Finally, the tool path planning was generated and the machining strategy was validated through milling experiments. It was also found that the profile roughness was deteriorated due to size effect when the cutting step decreased to a certain value.


Author(s):  
Jingyang Feng ◽  
Zhaocheng Wei ◽  
Minjie Wang ◽  
Xueqin Wang ◽  
Minglong Guo

2010 ◽  
Vol 23 (4) ◽  
pp. 486-494 ◽  
Author(s):  
Xu Rufeng ◽  
Chen Zhitong ◽  
Chen Wuyi ◽  
Wu Xianzhen ◽  
Zhu Jianjun

Sign in / Sign up

Export Citation Format

Share Document