path planning
Recently Published Documents


TOTAL DOCUMENTS

12872
(FIVE YEARS 6024)

H-INDEX

97
(FIVE YEARS 36)

2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

This paper investigates sensing data acquisition issues from large-scale hazardous environments using UAVs-assisted WSNs. Most of the existing schemes suffer from low scalability, high latency, low throughput, and low service time of the deployed network. To overcome these issues, we considered a clustered WSN architecture in which multiple UAVs are dispatched with assigned path knowledge for sensing data acquisition from each cluster heads (CHs) of the network. This paper first presents a non-cooperative Game Theory (GT)-based CHs selection algorithm and load balanced cluster formation scheme. Next, to provide timely delivery of sensing information using UAVs, hybrid meta-heuristic based optimal path planning algorithm is proposed by combing the best features of Dolphin Echolocation and Crow Search meta-heuristic techniques. In this research work, a novel objective function is formulated for both load-balanced CHs selection and for optimal the path planning problem. Results analyses demonstrate that the proposed scheme significantly performs better than the state-of-art schemes.


Author(s):  
Seçkin Canbaz ◽  
Gökhan Erdemir

In general, modern operating systems can be divided into two essential parts, real-time operating systems (RTOS) and general-purpose operating systems (GPOS). The main difference between GPOS and RTOS is the system istime-critical or not. It means that; in GPOS, a high-priority thread cannot preempt a kernel call. But, in RTOS, a low-priority task is preempted by a high-priority task if necessary, even if it’s executing a kernel call. Most Linux distributions can be used as both GPOS and RTOS with kernel modifications. In this study, two Linux distributions, Ubuntu and Pardus, were analyzed and their performances were compared both as GPOS and RTOS for path planning of the multi-robot systems. Robot groups with different numbers of members were used to perform the path tracking tasks using both Ubuntu and Pardus as GPOS and RTOS. In this way, both the performance of two different Linux distributions in robotic applications were observed and compared in two forms, GPOS, and RTOS.


2022 ◽  
Vol 245 ◽  
pp. 110532
Author(s):  
Dongfang Ma ◽  
Shunfeng Hao ◽  
Weihao Ma ◽  
Huarong Zheng ◽  
Xiuli Xu

2022 ◽  
Vol 73 ◽  
pp. 102255
Author(s):  
Yingshen Zhao ◽  
Philippe Fillatreau ◽  
Linda Elmhadhbi ◽  
Mohamed Hedi Karray ◽  
Bernard Archimede

2022 ◽  
Vol 27 (1) ◽  
pp. 1-20
Author(s):  
Jingyu He ◽  
Yao Xiao ◽  
Corina Bogdan ◽  
Shahin Nazarian ◽  
Paul Bogdan

Unmanned Aerial Vehicles (UAVs) have rapidly become popular for monitoring, delivery, and actuation in many application domains such as environmental management, disaster mitigation, homeland security, energy, transportation, and manufacturing. However, the UAV perception and navigation intelligence (PNI) designs are still in their infancy and demand fundamental performance and energy optimizations to be eligible for mass adoption. In this article, we present a generalizable three-stage optimization framework for PNI systems that (i) abstracts the high-level programs representing the perception, mining, processing, and decision making of UAVs into complex weighted networks tracking the interdependencies between universal low-level intermediate representations; (ii) exploits a differential geometry approach to schedule and map the discovered PNI tasks onto an underlying manycore architecture. To mine the complexity of optimal parallelization of perception and decision modules in UAVs, this proposed design methodology relies on an Ollivier-Ricci curvature-based load-balancing strategy that detects the parallel communities of the PNI applications for maximum parallel execution, while minimizing the inter-core communication; and (iii) relies on an energy-aware mapping scheme to minimize the energy dissipation when assigning the communities onto tile-based networks-on-chip. We validate this approach based on various drone PNI designs including flight controller, path planning, and visual navigation. The experimental results confirm that the proposed framework achieves 23% flight time reduction and up to 34% energy savings for the flight controller application. In addition, the optimization on a 16-core platform improves the on-time visit rate of the path planning algorithm by 14% while reducing 81% of run time for ConvNet visual navigation.


Sign in / Sign up

Export Citation Format

Share Document