scholarly journals Beurling numbers whose number of prime factors lies in a specified residue class

2020 ◽  
Vol 196 (4) ◽  
pp. 433-438
Author(s):  
Gregory Debruyne
Keyword(s):  
1999 ◽  
Vol 42 (3) ◽  
pp. 621-640 ◽  
Author(s):  
Laurent Rigal

Let Kq[X] = Oq(M(m, n)) be the quantization of the ring of regular functions on m × n matrices and Iq (X) be the ideal generated by the 2 × 2 quantum minors of the matrix X=(Xij)l≤i≤m, I≤j≤n of generators of Kq[X]. The residue class ring Rq(X) = Kq[X]/Iq(X) (a quantum analogue of determinantal rings) is shown to be an integral domain and a maximal order in its divisionring of fractions. For the proof we use a general lemma concerning maximalorders that we first establish. This lemma actually applies widely to prime factors of quantum algebras. We also prove that, if the parameter isnot a root of unity, all the prime factors of the uniparameter quantum space are maximal orders in their division ring of fractions.


2021 ◽  
Vol 71 (1) ◽  
pp. 251-263
Author(s):  
Guillermo Mantilla-Soler

Abstract Let L be a number field. For a given prime p, we define integers α p L $ \alpha_{p}^{L} $ and β p L $ \beta_{p}^{L} $ with some interesting arithmetic properties. For instance, β p L $ \beta_{p}^{L} $ is equal to 1 whenever p does not ramify in L and α p L $ \alpha_{p}^{L} $ is divisible by p whenever p is wildly ramified in L. The aforementioned properties, although interesting, follow easily from definitions; however a more interesting application of these invariants is the fact that they completely characterize the Dedekind zeta function of L. Moreover, if the residue class mod p of α p L $ \alpha_{p}^{L} $ is not zero for all p then such residues determine the genus of the integral trace.


2020 ◽  
Vol 63 (4) ◽  
pp. 1031-1047
Author(s):  
Florian Luca ◽  
Sibusiso Mabaso ◽  
Pantelimon Stănică

AbstractIn this paper, for a positive integer n ≥ 1, we look at the size and prime factors of the iterates of the Ramanujan τ function applied to n.


2001 ◽  
Vol 38 (1-4) ◽  
pp. 45-50 ◽  
Author(s):  
A. Balog

For an integer n≯1 letP(n) be the largest prime factor of n. We prove that there are infinitely many triplets of consecutive integers with descending largest prime factors, that is P(n - 1) ≯P(n)≯P(n+1) occurs for infinitely many integers n.


1986 ◽  
Vol 296 (1) ◽  
pp. 265-265 ◽  
Author(s):  
Adolf Hildebrand ◽  
G{érald Tenenbaum
Keyword(s):  

2002 ◽  
Vol 12 (2) ◽  
Author(s):  
M.V. Larin

AbstractWe give a complete description of the polynomials f(x) with integer coefficients such that the period of the recurring sequence u


Sign in / Sign up

Export Citation Format

Share Document