Hybridity and seed yield versus male sterility index (MSI) in pol CMS summer rape hybrid seed production plots

1992 ◽  
Vol 72 (4) ◽  
pp. 1231-1234 ◽  
Author(s):  
R. Pinnisch ◽  
P. B. E. McVetty

The degree of male sterility of pol A-lines, measured by a male sterility index (MSI) had significant linear relationships with both seed yield and hybridity of hybrid summer rape seed lots. Seed yield increased by 352 kg ha−1, while hybridity decreased by 6% per unit increase in MSI. A hybridity of 100% required an MSI of very nearly zero.Key words: pol CMS, Brassica napus, hybrids, MSI

2010 ◽  
Vol 9 (1) ◽  
pp. i
Author(s):  
Chun-yun GUAN ◽  
Guo-huai WANG ◽  
She-yuan CHEN ◽  
Xun LI ◽  
Zhong-song LIU ◽  
...  

1990 ◽  
Vol 70 (3) ◽  
pp. 611-618 ◽  
Author(s):  
R. PINNISCH ◽  
P. B. E. McVETTY

Hybrid summer rape (Brassica napus L.) seed production blocks were established at two locations in Manitoba in 1986 and 1987 to examine the effect of distance from the pollen source on seed yield, (both total and hybrid) and percent hybridity of seed produced on rows of a male sterile line of the open pollinated population B. napus cultivar, Marnoo, possessing the pol cytoplasmic male sterility inducing cytoplasm. A 10:1 ratio of male sterile line (A-line) to pollen parent was employed. Leaf cutter bees (Megachile rotundata F.) were used as the pollen vector between the two parents. In 1986, no significant differences in total seed yield were found among A-line rows, while in 1987, significant differences in total seed yields of A-line rows were found. Differences in hybrid seed yields among A-line rows were significant for all locations and years. Leaf cutter bees were found to be effective pollinators of the A-line plants. Less than half and less than a third of the seed produced on the A-line rows in 1986 and 1987, respectively, was hybrid seed. The high percentage of non-hybrid seed present in the seed lot may have been due to incomplete male sterility of the Marnoo A-line population. Total seed yields, hybrid seed yields and percent hybridity all declined linearly as distance from the pollen source increased. Improvement in the degree of male sterility of the Marnoo A-line population and/or a reduction in the 10:1 ratio of parents, and subsequent maximum A-line row to R-line row distance, will be necessary if hybrid summer rape seed production using this pol CMS A-line is to be commercially viable.Key words: Brassica napus L., CMS, hybrid, hybridity


2020 ◽  
Vol 117 (38) ◽  
pp. 23499-23509 ◽  
Author(s):  
Xueli An ◽  
Biao Ma ◽  
Meijuan Duan ◽  
Zhenying Dong ◽  
Ruogu Liu ◽  
...  

Understanding the molecular basis of male sterility and developing practical male-sterility systems are essential for heterosis utilization and commercial hybrid seed production in crops. Here, we report molecular regulation by genic male-sterility genemaize male sterility 7(ZmMs7) and its application for developing a dominant male-sterility system in multiple species.ZmMs7is specifically expressed in maize anthers, encodes a plant homeodomain (PHD) finger protein that functions as a transcriptional activator, and plays a key role in tapetal development and pollen exine formation. ZmMs7 can interact with maize nuclear factor Y (NF-Y) subunits to form ZmMs7-NF-YA6-YB2-YC9/12/15 protein complexes that activate target genes by directly binding to CCAAT box in their promoter regions. Premature expression ofZmMs7in maize by an anther-specific promoterp5126results in dominant and complete male sterility but normal vegetative growth and female fertility. Early expression ofZmMs7downstream genes induced by prematurely expressed ZmMs7 leads to abnormal tapetal development and pollen exine formation inp5126-ZmMs7maize lines. Thep5126-ZmMs7transgenic rice andArabidopsisplants display similar dominant male sterility. Meanwhile, themCherrygene coupled withp5126-ZmMs7facilitates the sorting of dominant sterility seeds based on fluorescent selection. In addition, both thems7-6007recessive male-sterility line andp5126-ZmMs7Mdominant male-sterility line are highly stable under different genetic germplasms and thus applicable for hybrid maize breeding. Together, our work provides insight into the mechanisms of anther and pollen development and a promising technology for hybrid seed production in crops.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1168e-1168 ◽  
Author(s):  
Edward C. Tigchelaar

The coupling phase linkages have been synthesized between the gene aw (without anthocyanin) and the male sterile gene ms15 (and its alleles ms26, ms47, and an Israeli source of male sterility). Less than 2 map units separate aw and ms15 on chromosome 2, providing a convenient seedling marker gene to rapidly identify male sterility for both inbred development and hybrid seed production. The seedling marker also provides a convenient marker to rapidly assess hybrid seed purity. Unique features of each of the alleles involved in male sterility and their use in inbred and hybrid development will be described.


Author(s):  
Mopidevi M. Nagaraju ◽  
T. Thomson ◽  
G. Koteswara Rao ◽  
M. Siva

Sign in / Sign up

Export Citation Format

Share Document