Criteria for Total Projectivity

1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.

1972 ◽  
Vol 13 (1) ◽  
pp. 47-48 ◽  
Author(s):  
Paul Hill

Suppose that G is a p-primary abelian group. The subgroup G[p] = {x∈G:px=0} is called the socle of G and any subgroup S of G[p] is called a subsocle of G. If each subsocle of G supports a pure subgroup, then G is said to be pure-complete [1]. It is well known that, if G a direct sum of cyclic groups, then G is necessarily pure-complete. Further results about pure-complete groups are contained in [1] and [3].


1990 ◽  
Vol 33 (1) ◽  
pp. 11-17 ◽  
Author(s):  
K. Benabdallah ◽  
C. Piché

AbstractThe class of primary abelian groups whose subsocles are purifiable is not yet completely characterized and it contains the class of direct sums of cyclic groups and torsion complete groups. In sharp constrast with this, the class of groups whose p2-bounded subgroups are purifiable consist only of those groups which are the direct sum of a bounded and a divisible group. Various tools are developed and a short application to the pure envelopes of cyclic subgroups is given in the last section.


1971 ◽  
Vol 23 (1) ◽  
pp. 48-57 ◽  
Author(s):  
John Irwin ◽  
James Swanek

In this paper we shall investigate an interesting connection between the structure of G/S and G, where S is a purifiable subsocle of G. The results are interesting in the light of a counterexample by Dieudonné [3, p. 142] who exhibits a primary abelian group G, where G/S is a direct sum of cyclic groups, but G is not a direct sum of cyclic groups. Surprisingly, the assumption of the purifiability of S allows G to inherit the structure of G/S. In particular, we show that if G/S is a direct sum of cyclic groups and S supports a pure subgroup H, then G is a direct sum of cyclic groups and if is a direct summand of G which is of course a direct sum of cyclic groups. It is also shown that if G/S is a direct sum of torsion-complete groups and S supports a pure subgroup H, then G is a direct sum of torsion-complete groups and H is a direct summand of G, and is also a direct sum of torsion-complete groups.


2011 ◽  
Vol 48 (2) ◽  
pp. 247-256
Author(s):  
Peter Danchev ◽  
Patrick Keef

An abelian p-group G has a nice basis if it is the ascending union of a sequence of nice subgroups, each of which is a direct sum of cyclic groups. It is shown that if G is any group, then G ⊕ D has a nice basis, where D is the divisible hull of pωG. This leads to a consideration of the nice basis rank of G, i.e., the smallest rank of a divisible group D such that G ⊕ D has a nice basis. This concept is used to show that there exist a reduced group G and a non-reduced group H, both without a nice basis, such that G ⊕ H has a nice basis


1969 ◽  
Vol 66 (2) ◽  
pp. 239-240 ◽  
Author(s):  
A. L. S. Corner

According to well-known theorems of Kaplansky and Baer–Kulikov–Kapla nsky–Fuchs (4, 2), the class of direct sums of countable Abelian groups and the class of direct sums of torsion-free Abelian groups of rank 1 are both closed under the formation of direct summands. In this note I give an example to show that the class of direct sums of torsion-free Abelian groups of finite rank does not share this closure property: more precisely, there exists a torsion-free Abelian group G which can be written both as a direct sum G = A⊕B of 2 indecomposable groups A, B of rank ℵ0 and as a direct sum G = ⊕n ε zCn of ℵ0 indecomposable groups Cn (nεZ) of rank 2, where Z is the set of all integers.


1969 ◽  
Vol 21 ◽  
pp. 1192-1205 ◽  
Author(s):  
Charles Megibben

In 1941, Kulikov (5) showed that a p-primary abelian group G is a direct sum of cyclic groups if and only if G is the union of an ascending sequence of subgroups each of which has a finite bound on the heights of its elements. An easy reformulation of the Kulikov criterion is: A p-primary abelian group G is a direct sum of cyclic groups if and only if G[p] = ⴲn<ωSn where, for each n, the non-zero elements of Sn have precisely height n. This statement suggests the consideration of reduced p-groups G such that G[p] = ⴲa<λSα where, for each α, Sα – {0} ⊆ pαG – pα+lG. We shall call such p-groups summable (the term principal p-group has been used by Honda (4)). Recall that the length of a reduced p-group G is the first ordinal λ such that pλG = 0.


2020 ◽  
Vol 8 (1) ◽  
pp. 5-27 ◽  
Author(s):  
Ulderico Dardano ◽  
Dikran Dikranjan ◽  
Luigi Salce

AbstractIf H is a subgroup of an abelian group G and φ ∈ End(G), H is called φ-inert (and φ is H-inertial) if φ(H) ∩ H has finite index in the image φ(H). The notion of φ-inert subgroup arose and was investigated in a relevant way in the study of the so called intrinsic entropy of an endomorphism φ, while inertial endo-morphisms (these are endomorphisms that are H-inertial for every subgroup H) were intensively studied by Rinauro and the first named author.A subgroup H of an abelian group G is said to be fully inert if it is φ-inert for every φ ∈ End(G). This property, inspired by the “dual” notion of inertial endomorphism, has been deeply investigated for many different types of groups G. It has been proved that in some cases all fully inert subgroups of an abelian group G are commensurable with a fully invariant subgroup of G (e.g., when G is free or a direct sum of cyclic p-groups). One can strengthen the notion of fully inert subgroup by defining H to be uniformly fully inert if there exists a positive integer n such that |(H + φH)/H| ≤ n for every φ ∈ End(G). The aim of this paper is to study the uniformly fully inert subgroups of abelian groups. A natural question arising in this investigation is whether such a subgroup is commensurable with a fully invariant subgroup. This paper provides a positive answer to this question for groups belonging to several classes of abelian groups.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Brendan Goldsmith ◽  
Ketao Gong

AbstractNecessary and sufficient conditions to ensure that the direct sum of two Abelian groups with zero entropy is again of zero entropy are still unknown; interestingly the same problem is also unresolved for direct sums of Hopfian and co-Hopfian groups.We obtain sufficient conditions in some situations by placing restrictions on the homomorphisms between the groups. There are clear similarities between the various cases but there is not a simple duality involved.


1970 ◽  
Vol 22 (6) ◽  
pp. 1118-1122 ◽  
Author(s):  
Doyle O. Cutler ◽  
Paul F. Dubois

Let G be a p-primary Abelian group. Recall that the final rank of G is infn∈ω{r(pnG)}, where r(pnG) is the rank of pnG and ω is the first limit ordinal. Alternately, if Γ is the set of all basic subgroups of G, we may define the final rank of G by supB∈Γ {r(G/B)}. In fact, it is known that there exists a basic subgroup B of G such that r(G/B) is equal to the final rank of G. Since the final rank of G is equal to the final rank of a high subgroup of G plus the rank of pωG, one could obtain the same information if the definition of final rank were restricted to the class of p-primary Abelian groups of length ω.


2011 ◽  
Vol 12 (01n02) ◽  
pp. 125-135 ◽  
Author(s):  
ABBY GAIL MASK ◽  
JONI SCHNEIDER ◽  
XINGDE JIA

Cayley digraphs of finite abelian groups are often used to model communication networks. Because of their applications, extremal Cayley digraphs have been studied extensively in recent years. Given any positive integers d and k. Let m*(d, k) denote the largest positive integer m such that there exists an m-element finite abelian group Γ and a k-element subset A of Γ such that diam ( Cay (Γ, A)) ≤ d, where diam ( Cay (Γ, A)) denotes the diameter of the Cayley digraph Cay (Γ, A) of Γ generated by A. Similarly, let m(d, k) denote the largest positive integer m such that there exists a k-element set A of integers with diam (ℤm, A)) ≤ d. In this paper, we prove, among other results, that [Formula: see text] for all d ≥ 1 and k ≥ 1. This means that the finite abelian group whose Cayley digraph is optimal with respect to its diameter and degree can be a cyclic group.


Sign in / Sign up

Export Citation Format

Share Document